English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution

Papkou, A., Guzella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R., et al. (2019). The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 923-928. doi:10.1073/pnas.1810402116.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0002-C8DF-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-C8E0-F
Genre: Journal Article

Files

show Files
hide Files
:
923.full(1).pdf (Publisher version), 2MB
Name:
923.full(1).pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Papkou, Andrei, Author
Guzella, Thiago, Author
Yang, Wentao, Author
Koepper, Svenja, Author
Pees, Barbara, Author
Schalkowski, Rebecca, Author
Barg, Mike-Christoph, Author
Rosenstiel, Philip C., Author
Teotónio, Henrique, Author
Schulenburg, Hinrich1, Author              
Affiliations:
1Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2600692              

Content

show
hide
Free keywords: -
 Abstract: Pathogens are omnipresent and by definition detrimental to their hosts. Pathogens thus exert high selection on their hosts, which, if adapting, can exert similar levels of selection on the pathogen, resulting in ongoing cycles of reciprocal adaptation between the antagonists. Such coevolutionary interactions have a central influence on the evolution of organisms. Surprisingly, we still know little about the exact selection dynamics and the genome regions involved. Our study uses a controlled experimental approach with an animal host to dissect coevolutionary selection. We find that distinct selective processes underlie rapid coadaptation in the two antagonists, including antagonistic frequency-dependent selection on toxin gene copy number in the pathogen, while the host response is likely influenced by changes in multiple genome regions.Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria–}phage systems or only one of the antagonists of a eukaryotic host{–}pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host{–pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis. We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.

Details

show
hide
Language(s): eng - English
 Dates: 2018-06-152018-12-062018-12-312019-01-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1073/pnas.1810402116
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 116 (3) Sequence Number: - Start / End Page: 923 - 928 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230