Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The ultrafast Einstein–de Haas effect

Dornes, C., Acremann, Y., Savoini, M., Kubli, M., Neugebauer, M. J., Abreu, E., et al. (2019). The ultrafast Einstein–de Haas effect. Nature, 565(7738), 209-222. doi:10.1038/s41586-018-0822-7.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1804.07159.pdf (Preprint), 3MB
Name:
1804.07159.pdf
Beschreibung:
Downloaded from arxiv.org: 2019-01-21
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
© the Author(s)
:
s41586-018-0822-7.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
s41586-018-0822-7.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/1804.07159 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://dx.doi.org/10.1038/s41586-018-0822-7 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Dornes, C.1, Autor
Acremann, Y.2, Autor
Savoini, M.1, Autor
Kubli, M.1, Autor
Neugebauer, M. J.1, Autor
Abreu, E.1, Autor
Huber, L.1, Autor
Lantz, G.1, Autor
Vaz, C. A. F.3, Autor
Lemke, H.4, Autor
Bothschafter, E. M.3, Autor
Porer, M.3, Autor
Esposito, V.3, Autor
Rettig, L.3, 5, Autor
Buzzi, M.3, 6, Autor           
Alberca, A.3, Autor
Windsor, Y. W.3, 5, Autor
Beaud, P.4, Autor
Staub, U.3, Autor
Zhu, D.7, Autor
Song, S.7, AutorGlownia, J. M.7, AutorJohnson, S. L.1, 4, Autor mehr..
Affiliations:
1Institute for Quantum Electronics, Physics Department, ETH Zurich, ou_persistent22              
2Laboratory for Solid State Physics, Physics Department, ETH Zurich, ou_persistent22              
3Swiss Light Source, Paul Scherrer Institute, Villigen, ou_persistent22              
4SwissFEL, Paul Scherrer Institute, Villigen, ou_persistent22              
5Fritz Haber Institute of the Max Planck Society, Berlin, ou_persistent22              
6Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938293              
7Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The Einstein-de Haas effect was originally observed in a landmark experiment1 demonstrating that the angular momentum associated with aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetization using an external magnetic field. A related problem concerns the timescale of this angular momentum transfer. Experiments have established that intense photoexcitation in several metallic ferromagnets leads to a drop in magnetization on a timescale shorter than 100 femtoseconds—a phenomenon called ultrafast demagnetization2,3,4. Although the microscopic mechanism for this process has been hotly debated, the key question of where the angular momentum goes on these femtosecond timescales remains unanswered. Here we use femtosecond time-resolved X-ray diffraction to show that most of the angular momentum lost from the spin system upon laser-induced demagnetization of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, launching a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the X-ray data to simulations and optical data, we estimate that the angular momentum transfer occurs on a timescale of 200 femtoseconds and corresponds to 80 per cent of the angular momentum that is lost from the spin system. Our results show that interaction with the lattice has an essential role in the process of ultrafast demagnetization in this system.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-04-182018-10-172019-01-022019-01-10
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41586-018-0822-7
arXiv: 1804.07159
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 290605
Förderprogramm : Funding Programme 7 (FP7)
Förderorganisation : European Commission (EC)
Projektname : Time-resolved X-ray diffraction measurements were carried out at the XPP endstation at LCLS. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-76SF00515. Preparatory static diffraction measurements were performed at the X04SA beamline of the Swiss Light Source. We acknowledge financial support by the NCCR Molecular Ultrafast Science and Technology (NCCR MUST), a research instrument of the Swiss National Science Foundation (SNSF). E.A. acknowledges support from the ETH Zurich Postdoctoral Fellowship Program and from the Marie Curie Actions for People COFUND programme. E.M.B. acknowledges funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 290605 (PSI-FELLOW/COFUND). M.P. acknowledges support from NCCR MARVEL, funded by the SNSF.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 565 (7738) Artikelnummer: - Start- / Endseite: 209 - 222 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238