Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy

Blumhardt, P., Stein, J., Mücksch, J., Stehr, F., Bauer, J., Jungmann, R., et al. (2018). Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules, 23(12): 3165. doi:10.3390/molecules23123165.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
molecules-23-03165-v4.pdf (Verlagsversion), 5MB
Name:
molecules-23-03165-v4.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
Open Access

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://edmond.mpdl.mpg.de/imeji/collection/2FgPkBEehRCbXAZP (Ergänzendes Material)
Beschreibung:
Raw data for DNA-PAINT, SI-FCS and confocal FCS measurements.
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Blumhardt, Philipp1, Autor           
Stein, Johannes1, Autor           
Mücksch, Jonas1, Autor           
Stehr, Florian1, Autor           
Bauer, Julian1, Autor           
Jungmann, Ralf2, Autor           
Schwille, Petra1, Autor           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              
2Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society, ou_2149679              

Inhalt

einblenden:
ausblenden:
Schlagwörter: SINGLE-MOLECULE FLUORESCENCE; OXYGEN SCAVENGING SYSTEM; TOTAL INTERNAL-REFLECTION; SUPERRESOLUTION MICROSCOPY; LOCALIZATION MICROSCOPY; OXIDATIVE DAMAGE; KINETICS; ACID; MECHANISMS; DIFFUSIONBiochemistry & Molecular Biology; Chemistry; DNA-PAINT; surface-integrated fluorescence correlation spectroscopy (SI-FCS); reactive oxygen species; photo-induced DNA damage; super-resolution microscopy;
 Zusammenfassung: The limited photon budget of fluorescent dyes is the main limitation for localization precision in localization-based super-resolution microscopy. Points accumulation for imaging in nanoscale topography (PAINT)-based techniques use the reversible binding of fluorophores and can sample a single binding site multiple times, thus elegantly circumventing the photon budget limitation. With DNA-based PAINT (DNA-PAINT), resolutions down to a few nanometers have been reached on DNA-origami nanostructures. However, for long acquisition times, we find a photo-induced depletion of binding sites in DNA-PAINT microscopy that ultimately limits the quality of the rendered images. Here we systematically investigate the loss of binding sites in DNA-PAINT imaging and support the observations with measurements of DNA hybridization kinetics via surface-integrated fluorescence correlation spectroscopy (SI-FCS). We do not only show that the depletion of binding sites is clearly photo-induced, but also provide evidence that it is mainly caused by dye-induced generation of reactive oxygen species (ROS). We evaluate two possible strategies to reduce the depletion of binding sites: By addition of oxygen scavenging reagents, and by the positioning of the fluorescent dye at a larger distance from the binding site.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018
 Publikationsstatus: Online veröffentlicht
 Seiten: 27
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: This article belongs to the Special Issue Single-Molecule Fluorescence Spectroscopy
 Art der Begutachtung: -
 Identifikatoren: ISI: 000454523000115
DOI: 10.3390/molecules23123165
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecules
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Basel : MDPI
Seiten: - Band / Heft: 23 (12) Artikelnummer: 3165 Start- / Endseite: - Identifikator: ISSN: 1420-3049
CoNE: https://pure.mpg.de/cone/journals/resource/954925623244