English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Beating vesicles: Encapsulated protein oscillations cause dynamic membrane deformations

Litschel, T., Ramm, B., Maas, R., Heymann, M., & Schwille, P. (2018). Beating vesicles: Encapsulated protein oscillations cause dynamic membrane deformations. Angewandte Chemie International Edition, 57(50), 16286-16290. doi:10.1002/anie.201808750.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Litschel_et_al-2018-Angewandte_Chemie_International_Edition.pdf (Publisher version), 32MB
Name:
Litschel_et_al-2018-Angewandte_Chemie_International_Edition.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© 2018 The Authors.

Creators

show
hide
 Creators:
Litschel, Thomas1, Author              
Ramm, Beatrice1, Author              
Maas, Roel1, Author              
Heymann, Michael1, Author              
Schwille, Petra1, Author              
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Content

show
hide
Free keywords: cell division; liposomes; membranes; synthetic biology; vesicles
 Abstract: The bacterial Min protein system was encapsulated in giant unilamellar vesicles (GUVs). Using confocal fluorescence microscopy, we identified several distinct modes of spatiotemporal patterns inside spherical GUVs. For osmotically deflated GUVs, the vesicle shape actively changed in concert with the Min oscillations. The periodic relocation of Min proteins from the vesicle lumen to the membrane and back is accompanied by drastic changes in the mechanical properties of the lipid bilayer. In particular, two types of oscillating membrane‐shape changes are highlighted: 1) GUVs that repeatedly undergo fission into two connected compartments and fusion of these compartments back into a dumbbell shape and 2) GUVs that show periodic budding and subsequent merging of the buds with the mother vesicle, accompanied by an overall shape change of the vesicle reminiscent of a bouncing ball. These findings demonstrate how reaction–diffusion‐based protein self‐organization can directly yield visible mechanical effects on membrane compartments, even up to autonomous division, without the need for coupling to cytoskeletal elements.

Details

show
hide
Language(s):
 Dates: 20182018-092018-12
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/anie.201808750
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie International Edition
  Other : Angewandte Chemie, International Edition
  Other : Angew. Chem. Int. Ed.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 57 (50) Sequence Number: - Start / End Page: 16286 - 16290 Identifier: ISSN: 1433-7851
CoNE: https://pure.mpg.de/cone/journals/resource/1433-7851