English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s

Latif, M., Kleeman, R., & Eckert, C. (1997). Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. Journal of Climate, 10, 2221-2239. doi:10.1175/1520-0442(1997)010<2221:GWDVOE>2.0.CO;2.

Item is

Files

show Files
hide Files
:
JoC-1997-Latif.pdf (Publisher version), 861KB
Name:
JoC-1997-Latif.pdf
Description:
Verlagsversion
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
175-Report.pdf (Preprint), 3MB
 
File Permalink:
-
Name:
175-Report.pdf
Description:
Reportversion / Preprint / Retrodigitalisiert
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Latif, Mojib1, Author
Kleeman, Richard2, Author
Eckert, Christian1, Author
Affiliations:
1MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913545              
2BMRC, Bureau of Meteorology Research Center, Box 1289K Melbourne 3001 Victoria Australia, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The dominant variability modes in the Tropics are investigated and contrasted with the anomalous situation observed during the last few years. The prime quantity analyzed is anomalous sea surface temperature (SST) in the region 30°S-60°N. Additionally, observed tropical surface wind stress fields were investigated. Further tropical atmospheric information was derived from a multidecadal run with an atmospheric general circulation model that was forced by the same SSTs. The tropical SST variability can be characterized by three modes: an interannual mode [the El Niño-Southern Oscillation (ENSO)], a decadal mode, and a trend or unresolved ultra-low-frequency variability. The dominant mode of SST variability is the ENSO mode. It is strongest in the eastern equatorial Pacific, but influences also the SSTs in other regions through atmospheric teleconnections, such as the Indian and North Pacific Oceans. The ENSO mode was strong during the 1980s, but it existed with very weak amplitude and short period after 1991. The second most energetic mode is characterized by considerable decadal variability. This decadal mode is connected with SST anomalies of the same sign in all three tropical oceans. The tropical Pacific signature of the decadal mode resembles closely that observed during the last few years and can be characterized by a horseshoe pattern, with strongest SST anomalies in the western equatorial Pacific, extending to the northeast and southeast into the subtropics. It is distinct from the ENSO mode, since it is not connected with any significant SST anomalies in the eastern equatorial Pacific, which is the ENSO key region. However, the impact of the decadal mode on the tropical climate resembles in many respects that of ENSO. In particular, the decadal mode is strongly linked to decadal rainfull fluctuations over northeastern Australia in the observations. It is shown that the anomalous 1990s were dominated by the decadal mode. Considerable SST variability can be attributed also to a linear trend or unresolved ultra-low-frequency variability. This trend that might be related to greenhouse warming is rather strong and positive in the Indian Ocean and western equatorial Pacific where it accounts for up to 30 of the total SST variability. Consistent with the increase of SST in the warm pool region, the trends over the tropical Pacific derived from both the observations and the model indicate a strengthening of the trade winds. This is inconsistent with the conditions observed during the 1990s. If the wind trends reflect greenhouse warming, it must be concluded that the anomalous 1990s are not caused by greenhouse warming. Finally, hybrid coupled ocean-atmosphere model experiments were conducted in order to investigate the sensistivity of ENSO to the low-frequency changes induced by the decadal mode and the trend. The results indicate that ENSO is rather sensitive to these changes in the background conditions.

Details

show
hide
Language(s): eng - English
 Dates: 1997
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Climate
  Other : J. Clim.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Boston, MA : American Meteorological Society
Pages: - Volume / Issue: 10 Sequence Number: - Start / End Page: 2221 - 2239 Identifier: ISSN: 0894-8755
CoNE: https://pure.mpg.de/cone/journals/resource/954925559525

Source 2

show
hide
Title: Report / Max-Planck-Institut für Meteorologie
  Other : MPI Report
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: Hamburg : Max-Planck-Institut für Meteorologie
Pages: - Volume / Issue: 175 Sequence Number: - Start / End Page: - Identifier: ISSN: 0937-1060
CoNE: https://pure.mpg.de/cone/journals/resource/0937-1060