Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Challenges and opportunities of predicting musical emotions with perceptual and automatized features

Lange, E. B., & Frieler, K. (2018). Challenges and opportunities of predicting musical emotions with perceptual and automatized features. Music Perception, 36(2), 217-242. doi:10.1525/MP.2018.36.2.217.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lange, Elke B.1, Autor           
Frieler, Klaus2, Autor
Affiliations:
1Department of Music, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_2421696              
2University of Music Franz Liszt, Weimar, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: music information retrieval (MIR); feature extraction; emotion expression; expert ratings; predictive modeling
 Zusammenfassung: MUSIC INFORMATION RETRIEVAL (MIR) IS A fast-growing research area. One of its aims is to extract musical characteristics from audio. In this study, we assumed the roles of researchers without further technical MIR experience and set out to test in an exploratory way its opportunities and challenges in the specific context of musical emotion perception. Twenty sound engineers rated 60 musical excerpts from a broad range of styles with respect to 22 spectral, musical, and cross-modal features (perceptual features) and perceived emotional expression. In addition, we extracted 86 features (acoustic features) of the excerpts with the MIRtoolbox (Lartillot & Toiviainen, 2007). First, we evaluated the perceptual and extracted acoustic features. Both perceptual and acoustic features posed statistical challenges (e.g., perceptual features were often bimodally distributed, and acoustic features highly correlated). Second, we tested the suitability of the acoustic features for modeling perceived emotional content. Four nearly disjunctive feature sets provided similar results, implying a certain arbitrariness of feature selection. We compared the predictive power of perceptual and acoustic features using linear mixed effects models, but the results were inconclusive. We discuss critical points and make suggestions to further evaluate MIR tools for modeling music perception and processing.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-04-072018-06-122018-11-262018-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000454443900005
DOI: 10.1525/MP.2018.36.2.217
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Music Perception
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Berkeley, CA : University of California Press
Seiten: - Band / Heft: 36 (2) Artikelnummer: - Start- / Endseite: 217 - 242 Identifikator: ISSN: 0730-7829
CoNE: https://pure.mpg.de/cone/journals/resource/954925533029