English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  PROSSTT: Probabilistic simulation of single-cell RNA-seq data for complex differentiation processes.

Papadopoulos, N., Parra, R. G., & Söding, J. (2019). PROSSTT: Probabilistic simulation of single-cell RNA-seq data for complex differentiation processes. Bioinformatics, (in press). doi:10.1093/bioinformatics/btz078.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0002-F36B-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-F36F-0
Genre: Journal Article

Files

show Files
hide Files
:
3026127.pdf (Preprint), 774KB
Name:
3026127.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
3026127_Suppl.pdf (Supplementary material), 4MB
Name:
3026127_Suppl.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Papadopoulos, N., Author
Parra, R. G., Author
Söding, J.1, Author              
Affiliations:
1Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1933286              

Content

show
hide
Free keywords: -
 Abstract: Cellular lineage trees can be derived from single-cell RNA sequencing snapshots of differentiating cells. Currently, only datasets with simple topologies are available. To test and further develop tools for lineage tree reconstruction, we need test datasets with known complex topologies. PROSSTT can simulate scRNA-seq datasets for differentiation processes with lineage trees of any desired complexity, noise level, noise model, and size. PROSSTT also provides scripts to quantify the quality of predicted lineage trees.

Details

show
hide
Language(s): eng - English
 Dates: 2019-02-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1093/bioinformatics/btz078
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Bioinformatics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: (in press) Start / End Page: - Identifier: -