English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol

Hammer, S. E., Mertes, S., Schneider, J., Ebert, M., Kandler, K., & Weinbruch, S. (2018). Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol. Atmospheric Chemistry and Physics, 18(19), 13987-14003. doi:10.5194/acp-18-13987-2018.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hammer, Stine Eriksen1, Author
Mertes, Stephan1, Author
Schneider, Johannes2, Author           
Ebert, Martin1, Author
Kandler, Konrad1, Author
Weinbruch, Stephan1, Author
Affiliations:
1external, ou_persistent22              
2Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826291              

Content

show
hide
Free keywords: -
 Abstract: Ice particle residuals (IRs) and the total aerosol particle population were sampled in parallel during mixed-phase cloud events at the high-altitude research station Jungfraujoch in January–February 2017. Particles were sampled behind an ice-selective counterflow impactor (Ice-CVI) for IRs and a heated total inlet for the total aerosol particles. A dilution set-up was used to collect total particles with the same sampling duration as for IRs to prevent overloading of the substrates. About 4000 particles from 10 Ice-CVI samples (from 7 days of cloud events at temperatures at the site between −10 and −18 ∘C) were analysed and classified with operator-controlled scanning electron microscopy. Contamination particles (identified by their chemical composition), most likely originating from abrasion in the Ice-CVI and collection of secondary ice, were excluded from further analysis. Approximately 3000 total aerosol particles (IRs and interstitial particles) from 5 days in clouds were also analysed. Enrichment and depletion of the different particle groups (within the IR fraction relative to the total aerosol reservoir) are presented as an odds ratio relative to alumosilicate (particles only consisting of Al, Si, and O), which was chosen as reference due to the large enrichment of this group relative to total aerosol and the relatively high number concentration of this group in both total aerosol and the IR samples. Complex secondary particles and soot are the major particle groups in the total aerosol samples but are not found in the IR fraction and are hence strongly depleted. C-rich particles (most likely organic particles) showed a smaller enrichment compared to aluminosilicates by a factor of ∼20. The particle groups with enrichment similar to aluminosilicate are silica, Fe aluminosilicates, Ca-rich particles, Ca sulfates, sea-salt-containing particles, and metal/metal oxide. Other aluminosilicates – consisting of variable amounts of Na, K, Ca, Si, Al, O, Ti, and Fe – are somewhat more enriched (factor ∼2) and Pb-rich particles are more (factor ∼8) enriched than aluminosilicates. None of the sampled IR groups showed a temperature or size dependence in respect to ice activity, which might be due to the limited sampling temperature interval and the similar size of the particles. Footprint plots and wind roses could explain the different total aerosol composition in one sample (carbonaceous particle emission from the urban/industrial area of Po Valley), but this did not affect the IR composition. Taking into account the relative abundance of the particle groups in total aerosol and the ice nucleation ability, we found that silica, aluminosilicates, and other aluminosilicates were the most important ice particle residuals at Jungfraujoch during the mixed-phase cloud events in winter 2017.

Details

show
hide
Language(s):
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000446097500005
DOI: 10.5194/acp-18-13987-2018
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
  Abbreviation : ACP
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Göttingen : Copernicus Publications
Pages: - Volume / Issue: 18 (19) Sequence Number: - Start / End Page: 13987 - 14003 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016