Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  New tolerance factor to predict the stability of perovskite oxides and halides

Bartel, C. J., Sutton, C. A., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., et al. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2): eaav0693. doi:10.1126/sciadv.aav0693.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
eaav0693.full.pdf (Verlagsversion), 2MB
Name:
eaav0693.full.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2019
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bartel, Christopher J.1, Autor
Sutton, Christopher A.2, Autor           
Goldsmith, Bryan R.3, Autor
Ouyang, Runhai2, Autor           
Musgrave, Charles B.1, 4, 5, Autor
Ghiringhelli, Luca M.2, Autor           
Scheffler, Matthias2, Autor           
Affiliations:
1Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA, ou_persistent22              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109‑2136, USA, ou_persistent22              
4Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA, ou_persistent22              
5Materials and Chemical Science and Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2−, F, Cl, Br, I) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB′X6) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-08-102018-12-212019-02-08
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1126/sciadv.aav0693
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : NoMaD - The Novel Materials Discovery Laboratory
Grant ID : 676580
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : TEC1p - Big-Data Analytics for the Thermal and Electrical Conductivity of Materials from First Principles
Grant ID : 740233
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Andere : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: 9 Band / Heft: 5 (2) Artikelnummer: eaav0693 Start- / Endseite: - Identifikator: ISSN: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548