English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Spatial variability of biogeochemistry in shallow coastal benthic communities of Potter Cove (Antarctica) and the impact of a melting glacier

Hoffmann, R., Pasotti, F., Vazquez, S., Lefaible, N., Torstensson, A., MacCormack, W., et al. (2018). Spatial variability of biogeochemistry in shallow coastal benthic communities of Potter Cove (Antarctica) and the impact of a melting glacier. PLOS ONE, 13(12): e0207917. doi:10.1371/journal.pone.0207917.

Item is

Files

show Files
hide Files
:
Wenzhoefer_2018_04.pdf (Publisher version), 3MB
Name:
Wenzhoefer_2018_04.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Hoffmann, Ralf, Author
Pasotti, Francesca, Author
Vazquez, Susana, Author
Lefaible, Nene, Author
Torstensson, Anders, Author
MacCormack, Walter, Author
Wenzhöfer, Frank1, Author           
Braeckman, Ulrike, Author
Affiliations:
1HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481702              

Content

show
hide
Free keywords: -
 Abstract: Measurements of biogeochemical fluxes at the sediment-water interface are essential to investigate organic matter mineralization processes but are rarely performed in shallow coastal areas of the Antarctic. We investigated biogeochemical fluxes across the sediment-water interface in Potter Cove (King George Island/Isla 25 de Mayo) at water depths between 6-9 m. Total fluxes of oxygen and inorganic nutrients were quantified in situ. Diffusive oxygen fluxes were also quantified in situ, while diffusive inorganic nutrient fluxes were calculated from pore water profiles. Biogenic sediment compounds (concentration of pigments, total organic and inorganic carbon and total nitrogen), and benthic prokaryotic, meio-, and macrofauna density and biomass were determined along with abiotic parameters (sediment granulometry and porosity). The measurements were performed at three locations in Potter Cove, which differ in terms of sedimentary influence due to glacial melt. In this study, we aim to assess secondary effects of glacial melting such as ice scouring and particle release on the benthic community and the biogeochemical cycles they mediate. Furthermore, we discuss small-scale spatial variability of biogeochemical fluxes in shallow water depth and the required food supply to cover the carbon demand of Potter Cove's shallow benthic communities. We found enhanced mineralization in soft sediments at one location intermediately affected by glacial melt-related effects, while a reduced mineralization was observed at a location influenced by glacial melting. The benthic macrofauna assemblage constituted the major benthic carbon stock (>87% of total benthic biomass) and was responsible for most benthic organic matter mineralization. However, biomass of the dominant Antarctic bivalve Latemula elliptica, which contributed 39-69% to the total macrofauna biomass, increased with enhanced glacial melt-related influence. This is contrary to the pattern observed for the remaining macrofauna. Our results further indicated that pelagic primary production is able to fully supply Potter Cove's benthic carbon demand. Therefore, Potter Cove seems to be an autotrophic ecosystem in the summer season.

Details

show
hide
Language(s):
 Dates: 2018
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLOS ONE
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 13 (12) Sequence Number: e0207917 Start / End Page: - Identifier: ISSN: 1932-6203