English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Extracting lines of maximal depth from MR images of the human brain

Lohmann, G., & Kruggel, F. J. (1996). Extracting lines of maximal depth from MR images of the human brain. In Proceedings of the 13th international conference on pattern recognition (pp. 518-522). Los Alamitos: IEEE Computer Society Press. doi:10.1109/ICPR.1996.547001.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0003-3AD5-C Version Permalink: http://hdl.handle.net/21.11116/0000-0003-3AD6-B
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lohmann, Gabriele1, Author              
Kruggel, Frithjof J.1, Author              
Affiliations:
1MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634574              

Content

show
hide
Free keywords: Humans; Surface topography; Robustness; Neuroscience; Magnetic resonance; Brain mapping; Testing; Performance evaluation; Image segmentation; Image analysis
 Abstract: This paper describes a new approach to the automatic detection of the bottom lines of the main cortical sulci using MR images of the human brain. The principle idea is to extract lines of maximal depth as measured from the smoothed brain surface. The main advantage of our approach over existing methods is that it is not based on curvature estimation. It is therefore much more robust and easier to implement.

Details

show
hide
Language(s): eng - English
 Dates: 2002-08-061996
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1109/ICPR.1996.547001
 Degree: -

Event

show
hide
Title: 13th International Conference on Pattern Recognition
Place of Event: Vienna, Austria
Start-/End Date: 1996-08-25 - 1996-08-29

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the 13th international conference on pattern recognition
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Los Alamitos : IEEE Computer Society Press
Pages: - Volume / Issue: 3 Sequence Number: - Start / End Page: 518 - 522 Identifier: ISBN: 0-8186-7282-X
ISSN: 1051-4651