Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model

Knauer, J., Zaehle, S., Kauwe, M. G. D., Bahar, N. H. A., Evans, J. R., Medlyn, B. E., et al. (2019). Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Global Change Biology, 25(5), 1820-1838. doi:10.1111/gcb.14604.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC3032.pdf (Verlagsversion), 8MB
Name:
BGC3032.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
BGC3032s1.zip (Ergänzendes Material), 2MB
Name:
BGC3032s1.zip
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1111/gcb.14604 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Knauer, Jürgen1, 2, Autor           
Zaehle, Sönke1, 3, Autor           
Kauwe, Martin G. De, Autor
Bahar, Nur H. A., Autor
Evans, John R., Autor
Medlyn, Belinda E., Autor
Reichstein, Markus4, Autor           
Werner, Christiane, Autor
Affiliations:
1Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938309              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497757              
3Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497787              
4Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1688139              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Mesophyll conductance (gm) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large‐scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An − Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm‐explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (−2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-02-262019-052019
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC3032
DOI: 10.1111/gcb.14604
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : QUINCI
Grant ID : 647204
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Global Change Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford, UK : Blackwell Science
Seiten: - Band / Heft: 25 (5) Artikelnummer: - Start- / Endseite: 1820 - 1838 Identifikator: ISSN: 1354-1013
CoNE: https://pure.mpg.de/cone/journals/resource/954925618107