English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Forest biomass retrieval approaches from earth observation in different biomes

Rodriguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E. S., Hoscilo, A., et al. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53-68. doi:10.1016/j.jag.2018.12.008.

Item is

Files

show Files
hide Files
:
BGC3034.pdf (Publisher version), 5MB
Name:
BGC3034.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1016/j.jag.2018.12.008 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Rodriguez-Veiga, Pedro, Author
Quegan, Shaun, Author
Carreiras, Joao, Author
Persson, Henrik J., Author
Fransson, Johan E. S., Author
Hoscilo, Agata, Author
Ziolkowski, Dariusz, Author
Sterenczak, Krzysztof, Author
Lohberger, Sandra, Author
Staengel, Matthias, Author
Berninger, Anna, Author
Siegert, Florian, Author
Avitabile, Valerio, Author
Herold, Martin, Author
Mermoz, Stephane, Author
Bouvet, Alexandre, Author
Le Toan, Thuy, Author
Carvalhais, Nuno1, Author           
Santoro, Maurizio, Author
Cartus, Oliver, Author
Rauste, Yrjo, AuthorMathieu, Renaud, AuthorAsner, Gregory P., AuthorThiel, Christian, AuthorPathe, Carsten, AuthorSchmullius, Chris, AuthorSeifert, Frank Martin, AuthorTansey, Kevin, AuthorBalzter, Heiko, Author more..
Affiliations:
1Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938310              

Content

show
hide
Free keywords: -
 Abstract: The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. These regions are representative of numerous forest biomes and biomass levels globally, from South African woodlands and savannas to the humid tropical forest of Kalimantan. AGB retrieval in each region relied on different sources of reference data, including forest inventory plot data and airborne LiDAR observations, and used a range of retrieval algorithms. This is the widest inter-comparison of regional-to-national AGB maps to date in terms of area, forest types, input datasets, and retrieval methods. The accuracy assessment of all regional maps using independent field data or LiDAR AGB maps resulted in an overall root mean square error (RMSE) ranging from 10 t ha−1 to 55 t ha−1 (37% to 67% relative RMSE), and an overall bias ranging from −1 t ha−1 to +5 t ha−1 at pixel level. The regional maps showed better agreement with field data than previously developed and widely used pan-tropical or northern hemisphere datasets. The comparison of accuracy assessments showed commonalities in error structures despite the variety of methods, input data, and forest biomes. All regional retrievals resulted in overestimation (up to 63 t ha−1) in the lower AGB classes, and underestimation (up to 85 t ha−1) in the higher AGB classes. Parametric model-based algorithms present advantages due to their low demand on in situ data compared to non-parametric algorithms, but there is a need for datasets and retrieval methods that can overcome the biases at both ends of the AGB range. The outcomes of this study should be considered when developing algorithms to estimate forest biomass at continental to global scale level.

Details

show
hide
Language(s):
 Dates: 2018-12-212019-01-022019-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC3034
DOI: 10.1016/j.jag.2018.12.008
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Applied Earth Observation and Geoinformation
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam [u.a.] : Elsevier Science
Pages: - Volume / Issue: 77 Sequence Number: - Start / End Page: 53 - 68 Identifier: ISSN: 0303-2434
CoNE: https://pure.mpg.de/cone/journals/resource/0303-2434