Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Feature Decomposition Based Saliency Detection in Electron Cryo-Tomograms

Zhou, B., Guo, Q., Wang, K., Zeng, X., Gao, X., & Xu, M. (2018). Feature Decomposition Based Saliency Detection in Electron Cryo-Tomograms. In 2018 IEEE International Conference onBioinformatics and Biomedicine (BIBM): proceedings (pp. 2467-2473). IEEE.

Item is

Basisdaten

ausblenden:
Genre: Konferenzbeitrag

Dateien

ausblenden: Dateien
:
Zhou.pdf (beliebiger Volltext), 365KB
 
Datei-Permalink:
-
Name:
Zhou.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Biochemistry, MMBC; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Zhou, Bo1, Autor
Guo, Qiang2, Autor           
Wang, Kaiwen1, Autor
Zeng, Xiangrui1, Autor
Gao, Xin1, Autor
Xu, Min1, Autor
Affiliations:
1external, ou_persistent22              
2Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565142              

Inhalt

ausblenden:
Schlagwörter: SEGMENTATION; CELLS; VIRUSsaliency detection; Electron Cryo-Tomography; super-voxel segmentation; 3D Gabor filter; robust PCA;
 Zusammenfassung: Electron Cryo-Tomography (ECT) allows 3D visualization of subcellular structures at the submolecular resolution in close to the native state. However, due to the high degree of structural complexity and imaging limits, the automatic segmentation of cellular components from ECT images is very difficult. To complement and speed up existing segmentation methods, it is desirable to develop a generic cell component segmentation method that is 1) not specific to particular types of cellular components, 2) able to segment unknown cellular components, 3) fully unsupervised and does not rely on the availability of training data. As an important step towards this goal, in this paper, we propose a saliency detection method that computes the likelihood that a subregion in a tomogram stands out from the background. Our method consists of four steps: supervoxel over-segmentation, feature extraction, feature matrix decomposition, and computation of saliency. The method produces a distribution map that represents the regions' saliency in tomograms. Our experiments show that our method can successfully label most salient regions detected by a human observer, and able to filter out regions not containing cellular components. Therefore, our method can remove the majority of the background region, and significantly speed up the subsequent processing of segmentation and recognition of cellular components captured by ECT.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2018
 Publikationsstatus: Erschienen
 Seiten: 7
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000458654000416
DOI: 10.1109/BIBM.2018.8621363
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Veranstaltungsort: Madrid, SPAIN
Start-/Enddatum: 2018-12-03 - 2018-12-06

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: 2018 IEEE International Conference onBioinformatics and Biomedicine (BIBM): proceedings
  Alternativer Titel : IEEE INT C BIOINFORM
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: IEEE
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 2467 - 2473 Identifikator: ISSN: 2156-1125
ISBN: 978-1-5386-5488-0

Quelle 2

ausblenden:
Titel: Bioinformatics and Biomedicine (BIBM), IEEE International Conference on
  Alternativer Titel : IEEE INT C BIOINFORM
  Untertitel : proceedings
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 2156-1125