English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Hörmander's method for the characteristic Cauchy problem and conformal scattering for a non linear wave equation

Joudioux, J. (2020). Hörmander's method for the characteristic Cauchy problem and conformal scattering for a non linear wave equation. Letters in Mathematical Physics. doi:10.1007/s11005-020-01266-0.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0003-484A-A Version Permalink: http://hdl.handle.net/21.11116/0000-0005-DD16-A
Genre: Journal Article

Files

show Files
hide Files
:
1903.12591.pdf (Preprint), 297KB
Name:
1903.12591.pdf
Description:
File downloaded from arXiv at 2019-04-01 10:53
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Joudioux2020_Article_HörmanderSMethodForTheCharacte.pdf (Publisher version), 584KB
Name:
Joudioux2020_Article_HörmanderSMethodForTheCharacte.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Joudioux, Jérémie1, Author              
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24012              

Content

show
hide
Free keywords: Mathematics, Analysis of PDEs, math.AP,
 Abstract: The purpose of this note is to prove the existence of a conformal scattering operator for the cubic defocusing wave equation on a non-stationary background. The proof essentially relies on solving the characteristic initial value problem by the method developed by H\"ormander. This method consists in slowing down the propagation speed of the waves to transform a characteristic initial value problem into a standard Cauchy problem.

Details

show
hide
Language(s):
 Dates: 2019-03-292020
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1903.12591
URI: http://arxiv.org/abs/1903.12591
DOI: 10.1007/s11005-020-01266-0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Letters in Mathematical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -