English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Continuous Holocene input of river sediment to the Indus Submarine Canyon

Li, Y., Clift, P. D., Böning, P., Blusztajn, J., Murray, R. W., Ireland, T., et al. (2018). Continuous Holocene input of river sediment to the Indus Submarine Canyon. Marine Geology.

Item is

Files

show Files
hide Files
:
Boening_2018_02.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
Boening_2018_02.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Li, Yuting , Author
Clift, Peter D. , Author
Böning, Philipp1, Author           
Blusztajn, Jerzy , Author
Murray, Richard W. , Author
Ireland, Thomas , Author
Pahnke, Katharina1, Author           
Helm, Natalie C. , Author
Giosan, Liviu , Author
Affiliations:
1Max Planck Research Group Marine Isotope Geochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481707              

Content

show
hide
Free keywords: -
 Abstract: Sediment supply and sea level interact to control sediment flux to deep-water submarine fans. Although some fans continue to be active during times of rising sea level, the source of sediment is not always clear and may be dominated by reworking in high energy coastal areas rather than reflecting erosional signals directly from the source drainage basin. We present new age and geochemical provenance data from cores covering the last ~20 ka that show continuous deep-water sedimentation through the Indus submarine canyon since at least ~11 ka, despite the cessation of sedimentation on the upper fan around that time. Large turbidity flows mantled terraces >200 m above the thalweg throughout the Holocene and their deposits show trends in grain size and geochemistry that we interpret to record direct supply from the river mouth and little reworking of older deposits eroded by longshore currents, storm waves, slumping, or sliding, at least at 4.7–9.0 ka. We use Nd–Sr isotope compositions to show that sediments within the canyon and in the shelf clinoform to the east of the canyon are similar to the Holocene river mouth, suggesting direct supply from the Indus River to the eastern clinoform and into the canyon. The sediment storage time on the shelf before redeposition would be no more than ~8 k.y., and likely much less during the Early-Mid Holocene (4.7–9.0 ka). Sr–Nd isotopes also indicate that significant reworking of sediment older than 8 ka during sea level rise is excluded. Thus, coherent erosional pulses (signals) in the river, likely caused by climatic disturbances, are communicated to the canyon at least since ~9.0 ka, suggesting that sediment supply, modulated by climate in the Indus basin, dominates over sea level in controlling canyon sedimentation in high sediment supply settings, although the vast majority of the sediment supply is stored on the shelf and in the delta. Our study for the first time allows the differentiation between reworking within the canyon and direct supply from the river in a major submarine canyon.

Details

show
hide
Language(s): eng - English
 Dates: 2018-12-01
 Publication Status: Published online
 Pages: 18
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Marine Geology
  Other : Mar. Geol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam [etc.] : Elsevier
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 0025-3227
CoNE: https://pure.mpg.de/cone/journals/resource/954925422118