English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  In situ development of a methanotrophic microbiome in deep-sea sediments

Ruff, S. E., Felden, J., Gruber-Vodicka, H. R., Marcon, Y., Knittel, K., Ramette, A., et al. (2019). In situ development of a methanotrophic microbiome in deep-sea sediments. The ISME Journal, 197-213.

Item is

Files

show Files
hide Files
:
Ruff_2018_01.pdf (Publisher version), 5MB
Name:
Ruff_2018_01.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ruff, S. Emil1, Author           
Felden, Janine1, Author           
Gruber-Vodicka, Harald R.2, Author           
Marcon, Y. , Author
Knittel, Katrin3, Author           
Ramette, Alban1, Author           
Boetius, Antje1, Author           
Affiliations:
1HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481702              
2Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481699              
3Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481696              

Content

show
hide
Free keywords: -
 Abstract: Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness, and cell numbers of the entire microbial community increased up to tenfold within a few years downstream of the mud flow from the eruptive center. The increasing diversity was accompanied by an up to fourfold increase in sequence abundance of relevant metabolic genes of the anaerobic methanotrophic and thiotrophic guilds. The communities fundamentally changed in their structure and functions as reflected in the metagenome turnover with distance from the eruptive center, and this was reflected in the biogeochemical zonation across the mud volcano caldera. The observed functional succession provides a framework for the response time and recovery of complex methanotrophic communities after disturbances of the deep-sea bed.

Details

show
hide
Language(s): eng - English
 Dates: 2018-08-282019-01
 Publication Status: Issued
 Pages: 17
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The ISME Journal
  Other : The ISME journal : multidisciplinary journal of microbial ecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Basingstoke : Nature Publishing Group
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 197 - 213 Identifier: ISSN: 1751-7370
CoNE: https://pure.mpg.de/cone/journals/resource/1751-7370