English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Morawetz estimate for linearized gravity in Schwarzschild

Andersson, L., Blue, P., & Wang, J. (2020). Morawetz estimate for linearized gravity in Schwarzschild. Annales Henri Poincaré, 21(3), 761-813. doi:10.1007/s00023-020-00886-5.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0003-587F-D Version Permalink: http://hdl.handle.net/21.11116/0000-0005-A5A4-7
Genre: Journal Article

Files

show Files
hide Files
:
1708.06943.pdf (Preprint), 812KB
Name:
1708.06943.pdf
Description:
File downloaded from arXiv at 2019-04-09 11:57
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Andersson2020_Article_MorawetzEstimateForLinearizedG.pdf (Publisher version), 866KB
 
File Permalink:
-
Name:
Andersson2020_Article_MorawetzEstimateForLinearizedG.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Andersson, Lars1, Author              
Blue, Pieter, Author
Wang, Jinhua, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24012              

Content

show
hide
Free keywords: Mathematics, Analysis of PDEs, math.AP,General Relativity and Quantum Cosmology, gr-qc,Mathematical Physics, math-ph,Mathematics, Mathematical Physics, math.MP
 Abstract: The equations governing the perturbations of the Schwarzschild metric satisfy the Regge-Wheeler-Zerilli-Moncrief system. Applying the technique introduced in [2], we prove an integrated local energy decay estimate for both the Regge-Wheeler and Zerilli equations. In these proofs, we use some constants that are computed numerically. Furthermore, we make use of the $r^p$ hierarchy estimates [13, 32] to prove that both the Regge-Wheeler and Zerilli variables decay as $t^{-\frac{3}{2}}$ in fixed regions of $r$.

Details

show
hide
Language(s):
 Dates: 2017-08-232017-08-242020
 Publication Status: Published in print
 Pages: 42 pages
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1708.06943
URI: http://arxiv.org/abs/1708.06943
DOI: 10.1007/s00023-020-00886-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales Henri Poincaré
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 (3) Sequence Number: - Start / End Page: 761 - 813 Identifier: -