Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Bi-directional control of walking behavior by horizontal optic flow sensors

Busch, C., Borst, A., & Mauss, A. S. (2018). Bi-directional control of walking behavior by horizontal optic flow sensors. Current Biology, 28(24), 4037-4045.e5. doi:10.1016/j.cub.2018.11.010.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Busch, Christian1, Autor           
Borst, Alexander1, Autor           
Mauss, Alex S.1, Autor           
Affiliations:
1Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society, ou_1113548              

Inhalt

einblenden:
ausblenden:
Schlagwörter: VISUAL INTERNEURONS; OPTOGENETIC CONTROL; SELF-MOTION; FLY; NEURONS; FLIES; SELECTIVITY; LOCOMOTION; MOVEMENT; CIRCUITSBiochemistry & Molecular Biology; Cell Biology;
 Zusammenfassung: Moving animals experience constant sensory feedback, such as panoramic image shifts on the retina, termed optic flow. Underlying neuronal signals are thought to be important for exploratory behavior by signaling unintended course deviations and by providing spatial information about the environment [1, 2]. Particularly in insects, the encoding of self-motion-related optic flow is well understood [1-5]. However, a gap remains in understanding how the associated neuronal activity controls locomotor trajectories. In flies, visual projection neurons belonging to two groups encode panoramic horizontal motion: horizontal system (HS) cells respond with depolarization to front-to-back motion and hyperpolarization to the opposite direction [6, 7], and other neurons have the mirror-symmetrical response profile [6, 8, 9]. With primarily monocular sensitivity, the neurons' responses are ambiguous for different rotational and translational self-movement components. Such ambiguities can be greatly reduced by combining signals from both eyes [10-12] to determine turning and movement speed [13-16]. Here, we explore the underlying functional logic by optogenetic HS cell manipulation in tethered walking Drosophila. We show that de- and hyperpolarization evoke opposite turning behavior, indicating that both direction-selective signals are transmitted to descending pathways for course control. Further experiments reveal a negative effect of bilaterally symmetric de-and hyperpolarization on walking velocity. Our results are therefore consistent with a functional architecture in which the HS cells' membrane potential influences walking behavior bi-directionally via two decelerating pathways.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-12-17
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000453543800034
DOI: 10.1016/j.cub.2018.11.010
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : SFB 870
Grant ID : -
Förderprogramm : -
Förderorganisation : German Research Foundation

Quelle 1

einblenden:
ausblenden:
Titel: Current Biology
  Andere : Curr. Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Cell Press
Seiten: - Band / Heft: 28 (24) Artikelnummer: - Start- / Endseite: 4037 - 4045.e5 Identifikator: ISSN: 0960-9822
CoNE: https://pure.mpg.de/cone/journals/resource/954925579107