English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Polymer physics predicts the effects of structural variants on chromatin architecture

Bianco, S., Lupiáñez, D. G., Chiariello, A. M., Annunziatella, C., Kraft, K., Schöpflin, R., et al. (2018). Polymer physics predicts the effects of structural variants on chromatin architecture. Nature Genetics, 50(5), 662-667. doi:10.1038/s41588-018-0098-8.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0003-60C8-F Version Permalink: http://hdl.handle.net/21.11116/0000-0003-60C9-E
Genre: Journal Article

Files

show Files
hide Files
:
Bianco.pdf (Publisher version), 2MB
Name:
Bianco.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© 2018 Springer Nature Publishing AG
License:
-

Locators

show

Creators

show
hide
 Creators:
Bianco, Simona , Author
Lupiáñez, Darío G., Author
Chiariello, Andrea M. , Author
Annunziatella, Carlo , Author
Kraft, Katerina1, Author              
Schöpflin, Robert1, Author              
Wittler, Lars2, Author              
Andrey, Guillaume , Author
Vingron, Martin3, Author              
Pombo, Ana, Author
Mundlos, Stefan1, Author              
Nicodemi, Mario , Author
Affiliations:
1Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433557              
2Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433548              
3Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479639              

Content

show
hide
Free keywords: -
 Abstract: Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer–promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

Details

show
hide
Language(s): eng - English
 Dates: 2018-02-272018-04-162018-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1038/s41588-018-0098-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Genetics
  Other : Nature Genet.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Nature America, Inc.
Pages: 6 Volume / Issue: 50 (5) Sequence Number: - Start / End Page: 662 - 667 Identifier: ISSN: 1061-4036
CoNE: https://pure.mpg.de/cone/journals/resource/954925598609