English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Origin of thermal and hyperthermal CO2 from CO oxidation on Pt surfaces: The role of post-transition-state dynamics, active sites, and chemisorbed CO2

Zhou, L., Kandratsenka, A., Campbell, C. T., Wodtke, A. M., & Guo, H. (2019). Origin of thermal and hyperthermal CO2 from CO oxidation on Pt surfaces: The role of post-transition-state dynamics, active sites, and chemisorbed CO2. Angewandte Chemie International Edition, 58(21), 6916-6920. doi:10.1002/anie.201900565.

Item is

Files

show Files
hide Files
:
3048519.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
3048519.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
3048519_Suppl_1.pdf (Supplementary material), 2MB
Name:
3048519_Suppl_1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
3048519_Suppl_2.wmv (Supplementary material), 2MB
Name:
3048519_Suppl_2.wmv
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
video/x-ms-wmv / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
3048519_Suppl_3.wmv (Supplementary material), 3MB
Name:
3048519_Suppl_3.wmv
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
video/x-ms-wmv / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Zhou, L., Author
Kandratsenka, A.1, Author           
Campbell, C. T., Author
Wodtke, A. M.1, Author           
Guo, H., Author
Affiliations:
1Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society, ou_578600              

Content

show
hide
Free keywords: CO oxidation; CO2 chemisorption; site specificity; surface dynamics
 Abstract: The post-transition-state dynamics in CO oxidation on Pt surfaces are investigated using DFT-based ab initio molecular dynamics simulations. While the initial CO2 formed on a terrace site on Pt(111) desorbs directly, it is temporarily trapped in a chemisorption well on a Pt(332) step site. These two reaction channels thus produce CO2 with hyperthermal and thermal velocities with drastically different angular distributions, in agreement with recent experiments (Nature, 2018, 558, 280-283). The chemisorbed CO2 is formed by electron transfer from the metal to the adsorbate, resulting in a bent geometry. While chemisorbed CO2 on Pt(111) is unstable, it is stable by 0.2 eV on a Pt(332) step site. This helps explain why newly formed CO2 produced at step sites desorbs with far lower translational energies than those formed at terraces. This work shows that steps and other defects could be potentially important in finding optimal conditions for the chemical activation and dissociation of CO2 .

Details

show
hide
Language(s): eng - English
 Dates: 2019-03-12
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/anie.201900565
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie International Edition
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 58 (21) Sequence Number: - Start / End Page: 6916 - 6920 Identifier: -