English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Odor-quality perception and its representation in the olfactory bulb

Bracey, E., Berman, H., Pimentel, D., Schaefer, A., Wallace, D., & Margrie, T. (2008). Odor-quality perception and its representation in the olfactory bulb. Poster presented at Workshop Local-Area Systems & Theoretical Neuroscience Day (LSTN 2008), London, UK.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Bracey, EF, Author
Berman, HF, Author
Pimentel, D, Author
Schaefer, AT, Author
Wallace, DJ1, 2, 3, Author              
Margrie, TW, Author
Affiliations:
1Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528697              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497807              

Content

show
hide
Free keywords: -
 Abstract: Understanding how patterns of neuronal activity contribute to odor perception will shed light on how external information is translated by the nervous system. Previously, large-scale lesioning of the nasal epithelium or the main olfactory bulb (OB) has been reported to produce only mild deficits in odor detection and discrimination. This has led to the idea that much of the glomerular activity within the OB is redundant and that odor processing can be achieved with a limited amount of sensory input. Here we have combined behavioural experiments and in vivo imaging to directly examine the relationship between OB activity and odor perception in mice with disrupted olfactory representations. Water-deprived mice (C57BL/6J, P30-70) were trained to discriminate a monomolecular rewarded odor (S+) from an unrewarded odor (S-) using a go/no-go behavioural paradigm. Subsequently, under pentobarbitone anesthesia (1.1mg/g b.w.), S+ and S- odor - evoked activity on the dorsal surface of the OB was recorded using standard intrinsic-signal imaging. Mice then received a nasal flush of either ZnSO4 (8.4%) to partially ablate sensory input, or NaCl (9%, sham treatment). Three to five days later, mice were assessed on discrimination of an unfamiliar odor pair and then on recognition of the pre-treatment S+ and S- odors. Mice were then re-anesthetised and a second imaging session was carried out to assess the representation of S+ and S- odors. We find that ZnSO4 - treated mice required significantly more trials to discriminate rewarded unfamiliar odors accurately (≥ 80% correct) than sham treated mice (336 ± 39.9, n = 5 mice vs 166.6 ± 44.4 trials, n = 6 mice; p < 0.05). Both groups however demonstrated equivalent discrimination accuracy scores after 340 trials (90.7 ± 3.7%, vs 91.7 ± 5.9%; p > 0.05) and showed no difference in their mean discrimination times (p > 0.05). For unrewarded familiar odorants, ZnSO4-treated mice showed significantly poorer recognition than sham mice (71 ± 7.4 vs 90 ± 2.8%, p < 0.05) and an initially significant discrimination deficit of rewarded familiar odorants (71.1 ± 7.3 vs 89.8 ± 2.2% p < 0.05; first 20 trials). Comparison of pre- and post-treatment imaging data revealed that the integrity of glomerular-activity patterns observed in the second session correlated with the ability to recognize S+ and S- odors (r = 0.74, p < 0.05, n = 13 mice). In contrast to previous lesion studies, our data show that perceived odor quality and the ability to distinguish odorants depends critically upon the number and integrity of functional input channels to the OB.

Details

show
hide
Language(s):
 Dates: 2008-07
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Workshop Local-Area Systems & Theoretical Neuroscience Day (LSTN 2008)
Place of Event: London, UK
Start-/End Date: 2008-07-08

Legal Case

show

Project information

show

Source 1

show
hide
Title: Workshop Local-Area Systems & Theoretical Neuroscience Day (LSTN 2008)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 18 Start / End Page: 21 Identifier: -