English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Machine-learned multi-system surrogate models for materials prediction

Nyshadham, C., Rupp, M., Bekker, B., Shapeev, A. V., Mueller, T., Rosenbrock, C. W., et al. (2019). Machine-learned multi-system surrogate models for materials prediction. npj Computational Materials, 5: 51. doi:10.1038/s41524-019-0189-9.

Item is

Files

show Files
hide Files
:
s41524-019-0189-9.pdf (Publisher version), 755KB
Name:
s41524-019-0189-9.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Nyshadham, Chandramouli1, Author
Rupp, Matthias2, 3, Author           
Bekker, Brayden1, Author
Shapeev, Alexander V. 4, Author
Mueller, Tim5, Author
Rosenbrock, Conrad W.1, Author
Csányi, Gábor6, Author
Wingate, David W.7, Author
Hart, Gus L. W.1, Author
Affiliations:
1Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA, ou_persistent22              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3Citrine Informatics, 702 Marshall Street, Redwood City, CA, 94063, USA, ou_persistent22              
4Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia, ou_persistent22              
5Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, ou_persistent22              
6Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK, ou_persistent22              
7Computer Science Department, Brigham Young University, Provo, UT, 84602, USA, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <2.5% for all systems.

Details

show
hide
Language(s): eng - English
 Dates: 2018-09-262019-03-272019-04-18
 Publication Status: Published online
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41524-019-0189-9
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : NoMaD - The Novel Materials Discovery Laboratory
Grant ID : 676580
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: npj Computational Materials
  Abbreviation : npj Comput. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Springer Nature
Pages: 6 Volume / Issue: 5 Sequence Number: 51 Start / End Page: - Identifier: ISSN: 2057-3960
CoNE: https://pure.mpg.de/cone/journals/resource/2057-3960