Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials

Liu, C., Lu, W., Weng, G. J., & Li, J. (2019). A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 756, 284-290. doi:10.1016/j.msea.2019.04.055.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Chunhui1, 2, Autor           
Lu, Wenjun3, Autor           
Weng, George J.4, Autor           
Li, Jianjun5, 6, Autor           
Affiliations:
1College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, Hunan, China, ou_persistent22              
2State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, Hunan, China, ou_persistent22              
3Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
4Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ, USA, ou_persistent22              
5State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, China, ou_persistent22              
6College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Couplings; Ductility; Grain boundaries; Molecular dynamics; Nanocrystalline materials; Nanocrystals; Rotation, Dislocation emission process; Dislocation emissions; Energetic characteristics; Grain boundary migration mechanisms; Grain boundary migrations; Molecular dynamics simulations; Nano grains; Stress-driven grain-growth, Grain growth
 Zusammenfassung: Extensive experiments and molecular dynamics simulations have shown that stress-driven grain growth can greatly contribute to enhanced dislocation emission and tensile ductility in nanocrystalline metals. However, the underlying mechanism behind this correlation remains unclear. In this work a theoretical model based on the cooperative nano-grain rotation and grain-boundary migration for grain growth is proposed to explain the enhanced dislocation emission from grain boundaries. Two partial dislocation dipoles are taken to emit from opposite grain boundaries. It is demonstrated that the joint, coupled growth behavior can indeed be achieved. The energetic characteristics and the critical stress of the emission process are analyzed. We found that under some circumstances dislocation emission is energetically unfavorable when pure nano-grain rotation or migration is operating. However, the dislocation emission process can be turned to become energetically favorable when their cooperative grain growth dominates the deformation. Moreover, the critical stress required to initiate the emission can be considerably reduced by enhancing the level of rotation, and minimized by tuning the coupling factor of the migration process. As a result, the cooperative grain growth by nano-grain rotation and grain-boundary migration can serve as a new route to enhanced dislocation emission and improved tensile ductility in nanocrystalline materials. © 2019 Elsevier B.V.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-05-22
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.msea.2019.04.055
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing
  Kurztitel : Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier B.V.
Seiten: - Band / Heft: 756 Artikelnummer: - Start- / Endseite: 284 - 290 Identifikator: ISSN: 0921-5093
CoNE: https://pure.mpg.de/cone/journals/resource/954928498465_1