Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Phase stabilities and vibrational analysis of hydrogenated diamondized bilayer graphenes: A first principles investigation

Pakornchote, T., Ektarawong, A., Alling, B., Pinsook, U., Tancharakorn, S., Busayaporn, W., et al. (2019). Phase stabilities and vibrational analysis of hydrogenated diamondized bilayer graphenes: A first principles investigation. Carbon, 146, 468-475. doi:10.1016/j.carbon.2019.01.088.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Pakornchote, Teerachote1, 2, Autor           
Ektarawong, A.3, Autor           
Alling, Björn4, 5, Autor           
Pinsook, Udomsilp1, 2, Autor           
Tancharakorn, Somchai6, Autor           
Busayaporn, Wutthikrai6, Autor           
Bovornratanaraks, Thiti1, 2, Autor           
Affiliations:
1Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand, ou_persistent22              
2Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand, ou_persistent22              
3Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden, ou_persistent22              
4Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863339              
5Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, Linköping, Sweden, ou_persistent22              
6Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Amorphous carbon; Crystal structure; Diamonds; Energy gap; Hydrogenation; Mechanical stability; Phase stability; Stability criteria; Wide band gap semiconductors, Bilayer Graphene; Experimental characterization; First-principles approaches; First-principles investigations; Hydrogenated diamond; Intrinsic property; Thermodynamically stable; Vibrational analysis, Graphene
 Zusammenfassung: The phase stabilities as well as some intrinsic properties of hydrogenated diamondized bilayer graphenes, 2-dimensional materials adopting the crystal structure of diamond and of lonsdaleite, are investigated using a first-principles approach. Our simulations demonstrate that hydrogenated diamondized bilayer graphenes are thermodynamically stable with respect to bilayer graphene and hydrogen molecule even at 0 GPa, and additionally they are found to withstand the physical change in structure up to at least 1000 K, ensuring their dynamical and thermal stabilities. The studied hydrogenated diamondized bilayer graphenes are predicted not only to behave as direct and wide band gap semiconductors, but also to have a remarkably high resistance to in-plane plastic deformation induced by indentation as implied by their high in-plane elastic constants comparable to those of diamond and of lonsdaleite. The mechanical stability of the materials is confirmed though the fulfilment of the Born stability criteria. Detailed analysis of phonon vibrational frequencies of hydrogenated diamondized bilayer graphenes reveals possible Raman active and IR active modes, which are found to be distinctly different from those of hydrogenated diamond-like amorphous carbon and defective graphene and thus could be used as a fingerprint for future experimental characterization of the materials. © 2019 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.carbon.2019.01.088
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Carbon
  Kurztitel : Carbon
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 146 Artikelnummer: - Start- / Endseite: 468 - 475 Identifikator: ISSN: 0008-6223
CoNE: https://pure.mpg.de/cone/journals/resource/954925388220