Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Classification of first-episode schizophrenia using multimodal brain features: A combined structural and diffusion imaging study

Liang, S., Li, Y., Zhang, Z., Kong, X., Wang, Q., Deng, W., et al. (2019). Classification of first-episode schizophrenia using multimodal brain features: A combined structural and diffusion imaging study. Schizophrenia Bulletin, 45(3), 591-599. doi:10.1093/schbul/sby091.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Liang_etal_2019_Classification of first-episode scizophrenia.pdf (Verlagsversion), 5MB
Name:
Liang_etal_2019_Classification of first-episode scizophrenia.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
sby091_suppl_supplementary_material.doc (Ergänzendes Material), 2MB
Name:
Supplementary data
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/msword / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liang, Sugai1, 2, Autor
Li, Yinfei 1, 2, Autor
Zhang, Zhong 3, Autor
Kong, Xiangzhen4, Autor           
Wang, Qiang 1, Autor
Deng, Wei 1, 2, Autor
Li, Xiaojing 1, Autor
Zhao, Liansheng1, Autor
Li, Mingli 1, Autor
Meng, Yajing 1, Autor
Huang, Feng 3, Autor
Ma, Xiaohong 1, Autor
Li, Xin-min 5, Autor
Greenshaw, Andrew J.5, Autor
Shao, Junming 3, Autor
Li, Tao 1, 2, Autor
Affiliations:
1Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, ou_persistent22              
2West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China, ou_persistent22              
3Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China, ou_persistent22              
4Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society, ou_792549              
5Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: schizophrenia;classification;diffusion tensor imaging;structural magnetic resonance imaging;gradient boosting
 Zusammenfassung: Schizophrenia is a common and complex mental disorder with neuroimaging alterations. Recent neuroanatomical pattern recognition studies attempted to distinguish individuals with schizophrenia by structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). 1, 2 Applications of cutting-edge machine learning approaches in structural neuroimaging studies have revealed potential pathways to classification of schizophrenia based on regional gray matter volume (GMV) or density or cortical thickness. 3–5 Additionally, cortical folding may have high discriminatory value in correctly identifying symptom severity in schizophrenia. 6 Regional GMV and cortical thickness have also been combined in attempts to differentiate individuals with schizophrenia from healthy controls (HCs). 7 Applications of machine learning algorithms to diffusion imaging data analysis to predict individuals with first-episode schizophrenia (FES) have achieved encouraging accuracy. 8–10 White matter (WM) abnormalities in schizophrenia as estimated by DTI appear to be present in the early stage of the disorder, most likely reflecting the developmental stage of the sample of interest.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-06-272019-05-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/schbul/sby091
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Schizophrenia Bulletin
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 45 (3) Artikelnummer: - Start- / Endseite: 591 - 599 Identifikator: ISSN: 0586-7614