English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments

Grotz, K. K., Nueesch, M. F., Holmstrom, E. D., Heinz, M., Stelzl, L. S., Schuler, B., et al. (2018). Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments. The Journal of Physical Chemistry B, 122(49), 11626-11639. doi:10.1021/acs.jpcb.8b07537.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Grotz, Kara K.1, Author           
Nueesch, Mark F.2, Author
Holmstrom, Erik D.2, Author
Heinz, Marcel1, Author           
Stelzl, Lukas S.1, Author           
Schuler, Benjamin2, 3, Author
Hummer, Gerhard1, 4, Author                 
Affiliations:
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
2Department of Biochemistry, University of Zurich, Zurich, Switzerland, ou_persistent22              
3Department of Physics, University of Zurich, Zurich, Switzerland, ou_persistent22              
4Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We combine single-molecule Förster resonance energy transfer (single-molecule FRET) experiments with extensive all-atom molecular dynamics (MD) simulations (>100 μs) to characterize the conformational ensembles of single-stranded (ss) DNA and RNA in solution. From MD simulations with explicit dyes attached to single-stranded nucleic acids via flexible linkers, we calculate FRET efficiencies and fluorescence anisotropy decays. We find that dispersion-corrected water models alleviate the problem of overly abundant interactions between fluorescent dyes and the aromatic ring systems of nucleobases. To model dye motions in a computationally efficient and conformationally exhaustive manner, we introduce a dye-conformer library, built from simulations of dinucleotides with covalently attached dye molecules. We use this library to calculate FRET efficiencies for dT19, dA19, and rA19 simulated without explicit labels over a wide range of salt concentrations. For end-labeled homopolymeric pyrimidine ssDNA, MD simulations with the parmBSC1 force field capture the overall trend in salt-dependence of single-molecule FRET based distance measurements. For homopolymeric purine ssRNA and ssDNA, the DESRES and parmBSC1 force fields, respectively, provide useful starting points, even though our comparison also identifies clear deviations from experiment.

Details

show
hide
Language(s): eng - English
 Dates: 2018-10-022018-08-062018-10-042018-12-13
 Publication Status: Issued
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.jpcb.8b07537
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry B
  Other : J. Phys. Chem. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 122 (49) Sequence Number: - Start / End Page: 11626 - 11639 Identifier: ISSN: 1520-6106
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000293370_1