日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Theoretical neuroscience of self‐organized criticality: from formal approaches to realistic models

Levina, A., Herrmann, J., & Geisel, T. (2014). Theoretical neuroscience of self‐organized criticality: from formal approaches to realistic models. In D., Plenz, E., Niebur, & H., Schuster (Eds.), Criticality in Neural Systems (pp. 417-436). Weinheim, Germany: Wiley-VCH. doi:10.1002/9783527651009.ch20.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0003-9690-0 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-B6C3-A
資料種別: 書籍の一部

ファイル

表示: ファイル

関連URL

表示:
非表示:
説明:
-
OA-Status:
Not specified

作成者

表示:
非表示:
 作成者:
Levina, A1, 著者           
Herrmann, JM, 著者
Geisel, T, 著者
所属:
1External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: The search for models of self‐organized criticality in neural networks started before the first experiments demonstrated examples of the critical brain. One of the early models, the Eurich model, predicted critical exponents and various dynamical regimes that were experimentally observed, but failed to describe a mechanism for the self‐organization of criticality. In contrast to simultaneous attempts, the LHG model did not only describe a route to criticality in neural systems but also turned out to be simple enough for analytical treatment. Interestingly, it showed also greater biological plausibility than the Eurich model. When the synapses in the network obey a realistic dynamics, the critical region in the parameter space increases and becomes infinite in the large system limit. This effect of depressive synapses can be interpreted as a feedback control mechanism that drives the system toward the critical state. If also facilitation is included in the synaptic dynamics the critical region extends even more. In the latter case an analytical treatment is still possible and reveals an interesting type of stationary state consisting of self‐organized critical phase and a subcritical phase that has not been described earlier. The phases are connected by first‐ and second‐order phase transitions which form a cusp bifurcation. Switching between phases can be induced by synchronized activity or by activity deprivation. Having the model established, we ask how the network topology, synaptic homeostasis, neural leakage, and long‐term learning affect the critical behavior of the network. We demonstrate that all main topology types (random, small‐world, scale‐free) permit critical avalanches. We conclude with a discussion of astonishing fact that various types of adaptivity in neural systems appear to cooperate in order to enable robust critical behavior.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2014-032014
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1002/9783527651009.ch20
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Criticality in Neural Systems
種別: 書籍
 著者・編者:
Plenz, D, 編集者
Niebur, E, 編集者
Schuster, HG, 編集者
所属:
-
出版社, 出版地: Weinheim, Germany : Wiley-VCH
ページ: 566 巻号: - 通巻号: 20 開始・終了ページ: 417 - 436 識別子(ISBN, ISSN, DOIなど): ISBN: 978-3-527-41104-7