Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Atomistic modelling of light-element co-segregation at structural defects in iron

McEniry, E., Hickel, T., & Neugebauer, J. (2018). Atomistic modelling of light-element co-segregation at structural defects in iron. Procedia Structural Integrity, 13, 1099-1104.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
McEniry, Eunan1, Autor           
Hickel, Tilmann1, Autor           
Neugebauer, Jörg2, Autor           
Affiliations:
1Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
2Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Studying the behaviour of hydrogen in the vicinity of extended defects, such as grain boundaries, dislocations, nanovoids and phase boundaries, is critical in understanding the phenomenon of hydrogen embrittlement. A key complication in this context is the interplay between hydrogen and other segregating elements. Modelling the competition of H with other light elements requires an efficient description of the interactions of compositionally complex systems, with the system sizes needed to appropriately describe extended defects often precluding the use of direct ab initio approaches. In this regard, we have developed novel electronic structure approaches to understand the energetics and mutual interactions of light elements at representative structural features in high-strength ferritic steels. Using this approach, we examine the co-segregation of hydrogen with carbon at chosen grain boundaries in α-iron. We find that the strain introduced by segregated carbon atoms at tilt grain boundaries increases the solubility of hydrogen close to the boundary plane, giving a higher H concentration in the vicinity of the boundary than in a carbon-free case. Via simulated tensile tests, we find that the simultaneous presence of carbon and hydrogen at grain boundaries leads to a significant decrease in the elongation to fracture compared with the carbon-free case. © 2018 The Authors.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.prostr.2018.12.231
BibTex Citekey: McEniry20181099
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 22nd European Conference on Fracture, ECF 2018
Veranstaltungsort: Belgrade, Serbia
Start-/Enddatum: 2018-08-25 - 2018-09-26

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Procedia Structural Integrity
  Kurztitel : Procedia Struct. Integr.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier B.V.
Seiten: - Band / Heft: 13 Artikelnummer: - Start- / Endseite: 1099 - 1104 Identifikator: ISSN: 2452-3216
CoNE: https://pure.mpg.de/cone/journals/resource/2452-3216