English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  An SO(3)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants

Feehan, P. M. N., & Leness, T. G. (2018). An SO(3)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants. Providence: American Mathematical Society.

Item is

Files

show Files
hide Files
:
Feehan_Leness_ArXiv_0203047.pdf (Preprint), 3MB
Name:
Feehan_Leness_ArXiv_0203047.pdf
Description:
File downloaded from arXiv at 2019-05-27 11:11
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://doi.org/10.1090/memo/1226 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Feehan, Paul M. N.1, Author           
Leness, Thomas G.1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Differential Geometry, Geometric Topology
 Abstract: We prove an analogue of the Kotschick-Morgan conjecture in the context of
SO(3) monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten
invariants of smooth four-manifolds using the SO(3)-monopole cobordism. The main technical difficulty in the SO(3)-monopole program relating the Seiberg-Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible SO(3) monopoles, namely the moduli spaces of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck
compactification of the moduli space of SO(3) monopoles (Feehan and Leness, PU(2) monopoles. I. Regularity, Uhlenback compactness, and transversality, 1998). In this monograph, we prove - modulo a gluing theorem which is an extension of our earlier work in PU(2) monopoles. III: Existence of gluing and obstruction maps (arXiv:math/9907107) - that these intersection pairings can be expressed in terms of topological data and Seiberg-Witten
invariants of the four-manifold. Our proofs that the SO(3)-monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore, Mariño, and Peradze (Superconformal invariance and the geography of four-manifolds, 1999; Four-manifold geography and superconformal symmetry, 1999) and Witten's Conjecture (Monopoles and four-manifolds, 1994) in full generality for all closed, oriented, smooth four-manifolds with and odd appear in Feehan and Leness, Superconformal simple type and Witten's conjecture (arXiv:1408.5085) and monopole cobordism and superconformal simple type (arXiv:1408.5307).

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: xiv, 234
 Publishing info: Providence : American Mathematical Society
 Table of Contents: Preface
Chapter 1. Introduction
Chapter 2. Preliminaries
Chapter 3. Diagonals of symmetric products of manifolds
Chapter 4. A partial Thom–Mather structure on symmetric products
Chapter 5. The instanton moduli space with spliced ends
Chapter 6. The space of global splicing data
Chapter 7. Obstruction bundle
Chapter 8. Link of an ideal Seiberg–Witten moduli space
Chapter 9. Cohomology and duality
Chapter 10. Computation of the intersection numbers
Chapter 11. Kotschick–Morgan Conjecture
Glossary of Notation
 Rev. Type: -
 Identifiers: arXiv: math/0203047
DOI: 10.1090/memo/1226
URI: http://arxiv.org/abs/math/0203047
ISBN: 978-1-4704-1421-4
ISBN: 978-1-4704-4915-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Memoirs of the American Mathematical Society
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 1226 Sequence Number: - Start / End Page: - Identifier: -