Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Effect of Transport Coefficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops

Wang, T., Ofman, L., Sun, X., Solanki, S. K., & Davila, J. M. (2018). Effect of Transport Coefficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops. The Astrophysical Journal, 860(2): 107. doi:10.3847/1538-4357/aac38a.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, Tongjiang, Autor
Ofman, Leon, Autor
Sun, Xudong, Autor
Solanki, Sami K.1, Autor           
Davila, Joseph M., Autor
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Sun: corona; Sun: UV radiation; Sun: flares; Sun: oscillations; waves
 Zusammenfassung: Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot (~10 MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the harmonic waves and the Fourier decomposition analysis show that the scaling law between damping time (τ) and wave period (P) follows τ ∝ P 2 in Model 2, while τ ∝ P in Model 1. This indicates that the largely enhanced viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are important in understanding both the wave excitation and damping mechanisms.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3847/1538-4357/aac38a
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astrophysical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol; Vienna : IOP Publishing; IAEA
Seiten: - Band / Heft: 860 (2) Artikelnummer: 107 Start- / Endseite: - Identifikator: ISSN: 0004-637X
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_3