English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance

Berthaume, M. A., Winchester, J., & Kupczik, K. (2019). Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance. PLoS One, 14(5): e0215436. doi:10.1371/journal.pone.0215436.

Item is

Files

show Files
hide Files
:
Berthaume_Ambient_PlosOne_2019.pdf (Publisher version), 2MB
Name:
Berthaume_Ambient_PlosOne_2019.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
©2019 Berthaume et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Locators

show

Creators

show
hide
 Creators:
Berthaume, Michael A.1, Author           
Winchester, Julia, Author
Kupczik, Kornelius1, Author                 
Affiliations:
1Max Planck Weizmann Center for integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Max Planck Society, ou_1497686              

Content

show
hide
Free keywords: -
 Abstract: Recently, ambient occlusion, quantified through portion de ciel visible (PCV) was introduced as a method for quantifying dental morphological wear resistance and reconstructing diet in mammals. Despite being used to reconstruct diet and investigate the relationship between dental form and function, no rigorous analysis has investigated the correlation between PCV and diet. Using a sample of platyrrhine and prosimians M2s, we show average PCV was significantly different between most dietary groups. In prosimian, insectivores had the lowest PCV, followed by folivores, omnivores, frugivores, and finally hard-object feeders. In platyrrhines, omnivores had the lowest average PCV, followed by folivores, frugivores, and finally hard-object feeders. PCV was correlated to two topographic variables (Dirichlet normal energy, DNE, and relief index, RFI) but uncorrelated to three others (orientation patch count rotated, OPCR, tooth surface area, and tooth size). The OPCR values here differed greatly from previously published values using the same sample, showing how differences in data acquisition (i.e., using 2.5D vs. 3D surfaces) can lead to drastic differences in results. Compared to other popular topographic variables, PCV performed as well or better at predicting diet in these groups, and when combined with a metric for size, the percent of successful dietary classifications reached 90%. Further, using an ontogenetic series of hominin (Paranthropus robustus) M2s, we show that PCV correlates well with probability of wear, with PCV values being higher on the portions of the occlusal surface that experience more wear (e.g., cusps and crest tips, wear facets) than the portions of the tooth that experience less. This relationship is strongest once wear facets have begun to form on the occlusal surface. These results highlight the usefulness of PCV in quantifying morphological wear resistance and predicting diet in mammals.

Details

show
hide
Language(s): eng - English
 Dates: 2019-05-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pone.0215436
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 14 (5) Sequence Number: e0215436 Start / End Page: - Identifier: ISSN: 1932-6203