English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The neural correlates of actions: A meta-analytical perspective on motor domains and movement features

Papitto, G., Friederici, A., & Zaccarella, E. (2019). The neural correlates of actions: A meta-analytical perspective on motor domains and movement features. Poster presented at Rovereto Workshop on Concepts, Actions, and Objects: Functional and Neural Perspectives, Rovereto, Italy.

Item is

Files

show Files
hide Files
:
CimMEC_Poster_A0_1_HSD.pdf (Any fulltext), 927KB
Name:
CimMEC_Poster_A0_1_HSD.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Papitto, Giorgio1, Author           
Friederici, Angela1, Author           
Zaccarella, Emiliano1, Author           
Affiliations:
1Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634551              

Content

show
hide
Free keywords: Action domains; Activation Likelihood Estimation; Meta-Analytic Connectivity Modelling; Broca’s area
 Abstract: Actions can be described in terms of modality of domain (e.g., imitation) and features of the movement (e.g., presence/absence of objects, complex/simple motor outputs). At the neuroanatomical level, conclusive evidence for both modality-specific phenomena and feature processing across multiple action domains remains sparse. Here we ask: (1) What neural resources are required to process actions within specific modalities? (2) Are the same motor features coded through similar neural networks in different modalities? By using quantitative Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modelling (MACM) methods, we obtained cumulative activity distributions of 416 previously published neuroimaging experiments to disentangle functional specificities of six action domains: (1) execution, (2) imitation, (3) observation, (4) imagery, (5) learning, and (6) planning. Our results show distinct functional patterns for the different domains, with cross-modal convergence for execution, imitation and imagery in the posterior Brodmann Area (pBA) 44 of the left inferior frontal gyrus (IFG). Fine-grained analyses in pBA44 reveals that activity in the region does not correlate with movement complexity, but rather with non-object-directed actions. Furthermore, the functional connectivity network seeding in the motor-based localized cluster of pBA44 differs from the connectivity network seeding in the (language-related) anterior BA44. Bringing the results together, we propose that the motor-related network encompassing pBA44 is recruited when processing simple movements, especially when the focus is on finger positioning. This, we believe, questions the role of the left IFG as a domain-general hub for processing syntactic complexity and simultaneously fails to support a mirror neuron hypothesis of action processing.

Details

show
hide
Language(s): eng - English
 Dates: 2019-05-03
 Publication Status: Not specified
 Pages: 1
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Rovereto Workshop on Concepts, Actions, and Objects: Functional and Neural Perspectives
Place of Event: Rovereto, Italy
Start-/End Date: 2019-05-02 - 2019-05-04

Legal Case

show

Project information

show

Source

show