Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  eGFRD in all dimensions

Sokolowski, T. R., Paijmans, J., Bossen, L., Miedema, T., Wehrens, M., Becker, N. B., et al. (2019). eGFRD in all dimensions. Journal of Chemical Physics, 150(5): 054108. doi:10.1063/1.5064867.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1708.09364 (Preprint), 21KB
Name:
1708.09364
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/xhtml+xml / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sokolowski, Thomas R.1, Autor
Paijmans, Joris2, Autor           
Bossen, Laurens1, Autor
Miedema, Thomas1, Autor
Wehrens, Martijn1, Autor
Becker, Nils B.1, Autor
Kaizu, Kazunari1, Autor
Takahashi, Koichi1, Autor
Dogterom, Marileen1, Autor
ten Wolde, Pieter Rein1, Autor
Affiliations:
1external, ou_persistent22              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Stochastic processes
 Zusammenfassung: Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green's Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into M <= N analytically tractable one- and two-particle systems; the analytical solutions (Green's functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present "eGFRD2," a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions. Published under license by AIP Publishing.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-02-072019-02-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000458109300009
DOI: 10.1063/1.5064867
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Physics
  Andere : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 150 (5) Artikelnummer: 054108 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226