Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

De Tomasi, G., Amini, M., Bera, S., Khaymovich, I. M., & Kravtsov, V. E. (2019). Survival probability in Generalized Rosenzweig-Porter random matrix ensemble. SciPost Physics, 6(1): 014. doi:10.21468/SciPostPhys.6.1.014.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1805.06472 (Preprint), 20KB
Name:
1805.06472
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/xhtml+xml / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
De Tomasi, Guiseppe1, Autor           
Amini, Mohsen2, Autor
Bera, Soumya2, Autor
Khaymovich, Ivan M.1, Autor           
Kravtsov, Vladimir E.2, Autor
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Phase transitions and critical phenomena
 Zusammenfassung: We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t), the probability of finding the initial state after time t. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t -> infinity) = k, finite in the thermodynamic limit N -> infinity, which approaches k = R (t -> 0) in this limit.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-01-302019-01-30
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000457556500014
DOI: 10.21468/SciPostPhys.6.1.014
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: SciPost Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : SciPost Foundation
Seiten: - Band / Heft: 6 (1) Artikelnummer: 014 Start- / Endseite: - Identifikator: ISSN: 2542-4653
CoNE: https://pure.mpg.de/cone/journals/resource/2542-4653