English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Revised historical solar irradiance forcing

Egorova, T., Schmutz, W., Rozanov, E., Shapiro, A., Usoskin, I., Beer, J., et al. (2018). Revised historical solar irradiance forcing. Astronomy and Astrophysics, 615: A85. doi:10.1051/0004-6361/201731199.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Egorova, T., Author
Schmutz, W., Author
Rozanov, E., Author
Shapiro, Alexander1, 2, Author           
Usoskin, I., Author
Beer, J., Author
Tagirov, R. V., Author
Peter, T., Author
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              
2ERC Starting Grant: Connecting Solar and Stellar Variabilities (SOLVe), Max Planck Institute for Solar System Research, Max Planck Society, ou_3164811              

Content

show
hide
Free keywords: solar-terrestrial relations / Sun: UV radiation / Sun: atmosphere / radiative transfer / line: formation / Sun: faculae, plages
 Abstract: Context. There is no consensus on the amplitude of historical solar forcing. The estimated magnitude of the total solar irradiance (TSI) difference between the Maunder minimum and the present time ranges from 0.1 to 6 W m−2 making the simulation of the past and future climate uncertain. One reason for this disagreement is the applied evolution of the quiet Sun brightness in solar irradiance reconstruction models. This work addresses the role of the quiet Sun model choice and updated solar magnetic activity proxies on the solar forcing reconstruction.

Aims. We aim to establish a plausible range for the solar irradiance variability on decadal to millennial timescales.

Methods. The spectral solar irradiance (SSI) is calculated as a weighted sum of the contributions from sunspot umbra, sunspot penumbra, faculae, and quiet Sun, which are pre-calculated with the NLTE Spectral SYnthesis code (NESSY). We introduce activity belts of the contributions from sunspots and faculae and a new structure model for the quietest state of the Sun. We assume that the brightness of the quiet Sun varies in time proportionally to the secular (22-yr smoothed) variation of the solar modulation potential.

Results. A new reconstruction of the TSI and SSI covering the period 6000 BCE - 2015 CE is presented. The model simulates solar irradiance variability during the satellite era well. The TSI change between the Maunder and recent minima ranges between 3.7 and 4.5 W m−2 depending on the applied solar modulation potential. The implementation of a new quietest Sun model reduces, by approximately a factor of two, the relative solar forcing compared to the largest previous estimation, while the application of an updated solar modulation potential increases the forcing difference between the Maunder minimum and the present by 25–40%.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/201731199
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : ERC-2016-STG - SOLVe
Grant ID : 715947
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 615 Sequence Number: A85 Start / End Page: - Identifier: Other: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1