English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Electron Acceleration to MeV Energies at Jupiter and Saturn

Kollmann, P., Roussos, E., Paranicas, C., Woodfield, E. E., Mauk, B. H., Clark, G., et al. (2018). Electron Acceleration to MeV Energies at Jupiter and Saturn. Journal of Geophysical Research: Space Physics, 123(11), 9110-9129. doi:10.1029/2018JA025665.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kollmann, P., Author
Roussos, Elias1, Author           
Paranicas, C., Author
Woodfield, E. E., Author
Mauk, B. H., Author
Clark, G., Author
Smith, D. C., Author
Vandegriff, J., Author
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Content

show
hide
Free keywords: -
 Abstract: The radiation belts and magnetospheres of Jupiter and Saturn show significant intensities of relativistic electrons with energies up to tens of megaelectronvolts (MeV). To date, the question on how the electrons reach such high energies is not fully answered. This is largely due to the lack of high‐quality electron spectra in the MeV energy range that models could be fit to. We reprocess data throughout the Galileo orbiter mission in order to derive Jupiter's electron spectra up to tens of MeV. In the case of Saturn, the spectra from the Cassini orbiter are readily available and we provide a systematic analysis aiming to study their acceleration mechanisms. Our analysis focuses on the magnetospheres of these planets, at distances of L > 20 and L > 4 for Jupiter and Saturn, respectively, where electron intensities are not yet at radiation belt levels. We find no support that MeV electrons are dominantly accelerated by wave‐particle interactions in the magnetospheres of both planets at these distances. Instead, electron acceleration is consistent with adiabatic transport. While this is a common assumption, confirmation of this fact is important since many studies on sources, losses, and transport of energetic particles rely on it. Adiabatic heating can be driven through various radial transport mechanisms, for example, injections driven by the interchange instability or radial diffusion. We cannot distinguish these processes at Saturn with our technique. For Jupiter, we suggest that the dominating acceleration process is radial diffusion because injections are never observed at MeV energies.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2018JA025665
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Space Physics
  Other : JGR-A
  Abbreviation : J. Geophys. Res. - A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 123 (11) Sequence Number: - Start / End Page: 9110 - 9129 Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264