English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Improved Calibration of the Radii of Cool Stars Based on 3D Simulations of Convection: Implications for the Solar Model

Spada, F., Demarque, P., Basu, S., & Tanner, J. D. (2018). Improved Calibration of the Radii of Cool Stars Based on 3D Simulations of Convection: Implications for the Solar Model. The Astrophysical Journal, 869(2): 135. doi:10.3847/1538-4357/aaee75.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Spada, Federico1, Author              
Demarque, P., Author
Basu, S., Author
Tanner, J. D., Author
Affiliations:
1Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              

Content

show
hide
Free keywords: convection; diffusion; stars: fundamental parameters; stars: interiors; stars: late-type
 Abstract: Main sequence, solar-like stars (M < 1.5 Msun) have outer convective envelopes that are sufficiently thick to affect significantly their overall structure. The radii of these stars, in particular, are sensitive to the details of inefficient, super-adiabatic convection occurring in their outermost layers. The standard treatment of convection in stellar evolution models, based on the Mixing-Length Theory (MLT), provides only a very approximate description of convection in the super-adiabatic regime. Moreover, it contains a free parameter, alpha_MLT, whose standard calibration is based on the Sun, and is routinely applied to other stars ignoring the differences in their global parameters (e.g., effective temperature, gravity, chemical composition) and previous evolutionary history. In this paper, we present a calibration of alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD) simulations of convection. The value of alpha_MLT is adjusted to match the specific entropy in the deep, adiabatic layers of the convective envelope to the corresponding value obtained from the 3D RHD simulations, as a function of the position of the star in the (log g, log T_eff) plane and its chemical composition. We have constructed a model of the present-day Sun using such entropy-based calibration. We find that its past luminosity evolution is not affected by the entropy calibration. The predicted solar radius, however, exceeds that of the standard model during the past several billion years, resulting in a lower surface temperature. This illustrative calculation also demonstrates the viability of the entropy approach for calibrating the radii of other late-type stars.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3847/1538-4357/aaee75
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Astrophysical Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol; Vienna : IOP Publishing; IAEA
Pages: - Volume / Issue: 869 (2) Sequence Number: 135 Start / End Page: - Identifier: ISSN: 0004-637X
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_3