English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations

Vögele, M., Köfinger, J., & Hummer, G. (2019). Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 123(24), 5099-5106. doi:10.1021/acs.jpcb.9b01656.

Item is

Files

show Files
hide Files
:
vögele-et-al-2019-finite-size-corrected-rotational-diffusion-coefficients-of-membrane-proteins-and-carbon-nanotubes.pdf (Any fulltext), 3MB
Name:
vögele-et-al-2019-finite-size-corrected-rotational-diffusion-coefficients-of-membrane-proteins-and-carbon-nanotubes.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Vögele, Martin1, Author           
Köfinger, Jürgen1, Author                 
Hummer, Gerhard1, 2, Author                 
Affiliations:
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
2Institute for Biophysics, Goethe University Frankfurt, Frankfurt, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor-Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity.

Details

show
hide
Language(s): eng - English
 Dates: 2019-05-242019-02-202019-05-272019-06-20
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.jpcb.9b01656
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry B
  Other : J. Phys. Chem. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 123 (24) Sequence Number: - Start / End Page: 5099 - 5106 Identifier: ISSN: 1520-6106
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000293370_1