English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evolution and function of adaptive immunogenetic diversity in humans

Pierini, F. (2019). Evolution and function of adaptive immunogenetic diversity in humans. PhD Thesis, Christian-Albrechts-Universtität, Kiel.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0003-C9A7-E Version Permalink: http://hdl.handle.net/21.11116/0000-0004-CA5D-1
Genre: Thesis

Files

show Files
hide Files
:
Pierini_PhDdissertation2(1).pdf (Publisher version), 25MB
 
File Permalink:
-
Name:
Pierini_PhDdissertation2(1).pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Pierini, Federica1, 2, Author              
Lenz, Tobias L.2, Referee              
Schulenburg, Hinrich, Referee
Affiliations:
1IMPRS for Evolutionary Biology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445639              
2Emmy Noether Research Group Evolutionary Immunogenomics, Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2068286              

Content

show
hide
Free keywords: -
 Abstract: The highly polymorphic HLA genes play a key role in adaptive immunity. The dynamic action of pathogen-mediated selection is proposed to be a major driver of HLA diversity, which involves parallel mechanisms acting at different time scales. Divergent HLA allelic lineages are proposed to be maintained over long evolutionary time in natural populations to facilitate immunity against the constant simultaneous barrage by many different pathogens. In contrast, specific HLA variants can be selected on a shorter time scale by the transient selection pressure imposed by specific pathogen. While the molecular signatures of continuous and directional selection on HLA genes might be intuitive and potentially detectable in natural populations, to identify signatures resulting from transient and fluctuating selection might be challenging. Nevertheless, both modes of past pathogen selection are suspected to have functional consequences detectable in present-day human populations. Here, we have established signatures of historical and potentially still ongoing selection for functional divergence in HLA allele pools, supporting the notion that pathogen selection has led to the persistence of divergent HLA allelic lineages. The further investigation of HLA allelic divergence in biomedical datasets revealed implications of this mechanism of pathogen-mediated selection on HIV disease progression as well as on cancer immunotherapy response. In order to study transient selection through time, reliable genotyping of the HLA genes in ancient samples is crucial. We have therefore established a semi-automated analysis pipeline for NGS-based genotyping of HLA genes from aDNA samples. The approach was applied successfully to a dataset of medieval Europeans, linking HLA variability with susceptibility to leprosy, and to a dataset of ancient and modern Mesoamerican human samples, suggesting its applicability to explore HLA gene variation through time.

Details

show
hide
Language(s): eng - English
 Dates: 2019-07-122019-07-12
 Publication Status: Published in print
 Pages: 241
 Publishing info: Kiel : Christian-Albrechts-Universtität
 Table of Contents: -
 Rev. Method: -
 Identifiers: Other: Diss/13180
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show