Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quantitative imaging of electric surface potentials with single-atom sensitivity

Wagner, C., Green, M. F. B., Maiworm, M., Leinen, P., Esat, T., Ferri, N., et al. (2019). Quantitative imaging of electric surface potentials with single-atom sensitivity. Nature Materials, 18(8), 853-859. doi:10.1038/s41563-019-0382-8.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wagner, Christian1, 2, Autor
Green, Matthew. F. B.1, 2, 3, Autor
Maiworm, Michael4, Autor
Leinen, Philipp1, 2, 3, Autor
Esat, Taner1, 2, 3, Autor
Ferri, Nicola5, Autor           
Friedrich, Niklas1, 2, 3, Autor
Findeisen, Rolf4, Autor
Tkatchenko, Alexandre5, 6, Autor           
Temirov, Ruslan1, 2, 7, Autor
Tautz, F. Stefan1, 2, 3, Autor
Affiliations:
1Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany, ou_persistent22              
2Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, Jülich, Germany, ou_persistent22              
3Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany, ou_persistent22              
4Otto-von-Guericke-Universität Magdeburg, Laboratory for Systems Theory and Automatic Control, Magdeburg, Germany, ou_persistent22              
5Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
6Physics and Materials Science Research Unit, University of Luxembourg, ou_persistent22              
7II. Physikalisches Institut, Universität zu Köln, Köln, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Because materials consist of positive nuclei and negative electrons, electric potentials are omnipresent at the atomic scale. However, due to the long range of the Coulomb interaction, large-scale structures completely outshine small ones. This makes the isolation and quantification of the electric potentials that originate from nanoscale objects such as atoms or molecules very challenging. Here we report a non-contact scanning probe technique that addresses this challenge. It exploits a quantum dot sensor and the joint electrostatic screening by tip and surface, thus enabling quantitative surface potential imaging across all relevant length scales down to single atoms. We apply the technique to the characterization of a nanostructured surface, thereby extracting workfunction changes and dipole moments for important reference systems. This authenticates the method as a versatile tool to study the building blocks of materials and devices down to the atomic scale.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-08-032019-04-182019-06-102019-08
 Publikationsstatus: Erschienen
 Seiten: 7
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41563-019-0382-8
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : CM3 - Controlled Mechanical Manipulation of Molecules
Grant ID : 757634
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : NPG
Seiten: 7 Band / Heft: 18 (8) Artikelnummer: - Start- / Endseite: 853 - 859 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000