English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

STAR Collaboration, Adam, J., Schmitz, N., Seyboth, P., & et al. (2018). Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions. Physics Letters B, (784), 26-32. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2018-313.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
STAR Collaboration1, Author
Adam, J.1, Author
Schmitz, N.1, Author
Seyboth, P.1, Author
et al.1, Author
Affiliations:
1Max Planck Institute for Physics, Max Planck Society and Cooperation Partners, ou_2253650              

Content

show
hide
Free keywords: STAR
 Abstract: New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

Details

show
hide
Language(s):
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physics Letters B
  Alternative Title : Phys.Lett.B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: (784) Sequence Number: - Start / End Page: 26 - 32 Identifier: -