English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Towards maximized utilization of iridium for the acidic oxygen evolution reaction

Ledendecker, M., Geiger, S., Hengge, K. A., Lim, J., Cherevko, S., Mingers, A. M., et al. (2019). Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Research, 12(9), 2275-2280. doi:10.1007/s12274-019-2383-y.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ledendecker, Marc1, Author              
Geiger, Simon1, Author              
Hengge, Katharina Anna2, Author              
Lim, Joohyun2, Author              
Cherevko, Serhiy3, Author              
Mingers, Andrea M.1, Author              
Göhl, Daniel1, Author              
Fortunato, Guilherme Vilalba1, 4, Author              
Jalalpoor, Daniel5, Author              
Schüth, Ferdi5, Author              
Scheu, Christina2, Author              
Mayrhofer, Karl Johann Jakob1, 3, 6, Author              
Affiliations:
1Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
2Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
3Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
4Institute of Chemistry, Universidade Federal de Mato Grosso Do sul, Av. Senador Filinto Muller, 1555, Campo Grande MS, Brazil, ou_persistent22              
5Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445589              
6Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: oxygen evolution reaction; liquid atomic layer deposition; catalysis; iridium; core-shell nanoparticles
 Abstract: The reduction in noble metal content for efficient oxygen evolution catalysis is a crucial aspect towards the large scale commercialisation of polymer electrolyte membrane electrolyzers. Since catalytic stability and activity are inversely related, long service lifetime still demands large amounts of low-abundant and expensive iridium. In this manuscript we elaborate on the concept of maximizing the utilisation of iridium for the oxygen evolution reaction. By combining different tin oxide based support materials with liquid atomic layer deposition of iridium oxide, new possibilities are opened up to grow thin layers of iridium oxide with tuneable noble metal amounts. In-situ, time- and potential-resolved dissolution experiments reveal how the stability of the substrate and the catalyst layer thickness directly affect the activity and stability of deposited iridium oxide. Based on our results, we elaborate on strategies how to obtain stable and active catalysts with maximized iridium utilisation for the oxygen evolution reaction and demonstrate how the activity and durability can be tailored correspondingly. Our results highlight the potential of utilizing thin noble metal films with earth abundant support materials for future catalytic applications in the energy sector.

Details

show
hide
Language(s): eng - English
 Dates: 2018-12-212019-03-132019-03-282019-09-01
 Publication Status: Published in print
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s12274-019-2383-y
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nano Research
  Abbreviation : Nano Res.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Beijing, China : Tsinghua University Press
Pages: - Volume / Issue: 12 (9) Sequence Number: - Start / End Page: 2275 - 2280 Identifier: ISSN: 1998-0124
CoNE: https://pure.mpg.de/cone/journals/resource/1998-0124