Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Using Gaussian Process Regression to Simulate the Vibrational Raman Spectra of Molecular Crystals

Raimbault, N., Grisafi, A., Ceriotti, M., & Rossi, M. (2019). Using Gaussian Process Regression to Simulate the Vibrational Raman Spectra of Molecular Crystals. New Journal of Physics, 21(10): 105001. doi:10.1088/1367-2630/ab4509.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
1906.07485.pdf (Preprint), 3MB
Name:
1906.07485.pdf
Beschreibung:
File downloaded from arXiv at 2019-06-27 09:23
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Raimbault_2019_New_J._Phys._21_105001.pdf (Verlagsversion), 2MB
Name:
Raimbault_2019_New_J._Phys._21_105001.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2019
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Raimbault, Nathaniel1, Autor           
Grisafi, Andrea2, Autor
Ceriotti, Michele2, Autor
Rossi, Mariana1, Autor           
Affiliations:
1NOMAD, Fritz Haber Institute, Max Planck Society, ou_3253022              
2Ecole Polytechnique Federale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Physics, Computational Physics, physics.comp-ph
 Zusammenfassung: Vibrational properties of molecular crystals are constantly used as structural fingerprints, in order to identify both the chemical nature and the structural arrangement of molecules. The simulation of these properties is typically very costly, especially when dealing with response properties of materials to e.g. electric fields, which require a good description of the perturbed electronic density. In this work, we use Gaussian process regression (GPR) to predict the static polarizability and dielectric susceptibility of molecules and molecular crystals. We combine this framework with ab initio molecular dynamics to predict their anharmonic vibrational Raman spectra. We stress the importance of data representation, symmetry, and locality, by comparing the performance of different flavors of GPR. In particular, we show the advantages of using a recently developed symmetry-adapted version of GPR. As an examplary application, we choose Paracetamol as an isolated molecule and in different crystal forms. We obtain accurate vibrational Raman spectra in all cases with fewer than 1000 training points, and obtain improvements when using a GPR trained on the molecular monomer as a baseline for the crystal GPR models. Finally, we show that our methodology is transferable across polymorphic forms: we can train the model on data for one structure, and still be able to accurately predict the spectrum for a second polymorph. This procedure provides an independent route to access electronic structure properties when performing force-evaluations on empirical force-fields or machine-learned potential energy surfaces.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2019-06-182019-09-162019-10-01
 Publikationsstatus: Online veröffentlicht
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: New Journal of Physics
  Kurztitel : New J. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IOP Publishing
Seiten: 14 Band / Heft: 21 (10) Artikelnummer: 105001 Start- / Endseite: - Identifikator: ISSN: 1367-2630
CoNE: https://pure.mpg.de/cone/journals/resource/954926913666