Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations

Wang, X., Binder, K., Chen, C., Koop, T., Pöschl, U., Su, H., et al. (2019). Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations. Physical Chemistry Chemical Physics, 21(6), 3360-3369. doi:10.1039/c8cp05997g.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Wang, Xiaoxiang1, Autor           
Binder, Kurt2, Autor
Chen, Chuchu1, Autor           
Koop, Thomas2, Autor
Pöschl, Ulrich1, Autor           
Su, Hang1, Autor           
Cheng, Yafang1, Autor           
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              
2external, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The surface tension of supercooled water is of fundamental importance in physical chemistry and materials and atmospheric sciences. Controversy, however, exists over its temperature dependence in the supercooled regime, especially on the existence of the “second inflection point (SIP)”. Here, we use molecular dynamics simulations of the SPC/E water model to study the surface tension of water (σw) as a function of temperature down to 198.15 K, and find a minimum point of surface excess entropy per unit area around ∼240–250 K. Additional simulations with the TIP4P/2005 water model also show consistent results. Hence, we predict an SIP of σw roughly in this region, at the boundary where the “no man's land” happens. The increase of surface entropy with decreasing temperature in the region below the inflection point is clearly an anomalous behavior, unknown for simple liquids. Furthermore, we find that σw has a near-linear correlation with the interfacial width, which can be well explained by the capillary wave theory. Deep in the supercooled regime, a compact water layer at the interface is detected in our simulations, which may be a key component that contributes to the deviation of surface tension from the International Association for the Properties of Water and Steam relationship. Our findings may advance the understanding of the origin of the anomalous properties of liquid water in the supercooled regime.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2019
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000459584900052
DOI: 10.1039/c8cp05997g
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Chemistry Chemical Physics
  Kurztitel : Phys. Chem. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, England : Royal Society of Chemistry
Seiten: - Band / Heft: 21 (6) Artikelnummer: - Start- / Endseite: 3360 - 3369 Identifikator: ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1