Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations

Tanahrte, M., Bacer, S., Burrows, S. M., Huffman, J. A., Pierce, K. M., Pozzer, A., et al. (2019). Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations. Atmospheric Chemistry and Physics Discussions, 19. doi:10.5194/acp-2019-251.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tanahrte, Meryem1, Autor           
Bacer, Sara1, Autor           
Burrows, Susannah M., Autor
Huffman, J. Alex, Autor
Pierce, Kyle M., Autor
Pozzer, Andrea1, Autor           
Sarda-Estève, Roland, Autor
Savage, Nicole J., Autor
Lelieveld, Jos1, Autor           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Primary biological aerosol particles (PBAPs) may impact human health and aerosol-cloud-climate interactions. The role of PBAPs in the earth system is associated with large uncertainties, for example of source estimates and the atmospheric lifetime. We used a chemistry-climate model to simulate PBAPs in the atmosphere including bacteria and fungal spores. Three fungal spore emission parameterizations have been evaluated against an updated set of spore counts synthesized from observations reported in the literature. The comparison indicates an optimal fit for the emission parameterization proposed by Heald and Spracklen (2009) and adapted by Hoose et al. (2010) for particle sizes of 5 µm or 3 µm, although the model still overpredicts PBAP concentrations in some locations. The correlations between the spore count observations and meteorological parameters simulated by the model show a strong dependence on the leaf area index in non-urban areas and the specific humidity in urban areas. Additional evaluation was performed by comparing our combined bacteria and fungal spore simulations to a global dataset of fluorescent biological aerosol particle (FBAP) concentrations. The model predicts the total sum of measured PBAP concentrations relatively well, typically within a factor of two of FBAP. Further, the modeled fungal spore results deviate from the FBAP concentrations when used as a rough proxy for spores, depending on the particle size used in the parametrization. Uncertainties related to technical aspects of the FBAP and direct-counting spore measurements challenge the ability to further refine quantitative comparison on this scale. Additional long-term data of better quality are needed to improve emission parameterizations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019
 Publikationsstatus: Online veröffentlicht
 Seiten: 31
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/acp-2019-251
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Chemistry and Physics Discussions
  Kurztitel : Atmos. Chem. Phys. Discuss.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Seiten: 31 Band / Heft: 19 Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006