English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  New divisors in the boundary of the instanton moduli space

Jardim, M., Markushevich, D., & Tikhomirov, A. S. (2018). New divisors in the boundary of the instanton moduli space. Moscow Mathematical Journal, 18(1), 117-148.

Item is

Files

show Files
hide Files
:
arXiv:1501.00736.pdf (Preprint), 399KB
Name:
arXiv:1501.00736.pdf
Description:
File downloaded from arXiv at 2019-07-08 11:03
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Jardim-Markushevich-Tikhomirov_New divisors in the boundary of the instanton_2018.pdf (Publisher version), 619KB
 
File Permalink:
-
Name:
Jardim-Markushevich-Tikhomirov_New divisors in the boundary of the instanton_2018.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Jardim, Marcos, Author
Markushevich, Dimitri1, Author           
Tikhomirov, Alexander S.1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry
 Abstract: Let ${\mathcal I}(n)$ denote the moduli space of rank $2$ instanton bundles
of charge $n$ on ${\mathbb P}^3$. It is known that ${\mathcal I}(n)$ is an irreducible, nonsingular and affine variety of dimension $8n-3$. Since every rank $2$ instanton bundle on ${\mathbb P}^3$ is stable, we may regard ${\mathcal I}(n)$ as an open subset of the projective Gieseker-Maruyama moduli scheme ${\mathcal M}(n)$ of rank $2$ semistable torsion free sheaves $F$ on ${\mathbb P}^3$ with Chern classes $c_1=c_3=0$ and $c_2=n$, and consider the closure $\overline{{\mathcal I}(n)}$ of ${\mathcal I}(n)$ in ${\mathcal M}(n)$.
We construct some of the irreducible components of dimension $8n-4$ of the
boundary $\partial{\mathcal I}(n):=\overline{{\mathcal I}(n)}\setminus{\mathcal
I}(n)$. These components generically lie in the smooth locus of ${\mathcal M}(n)$ and consist of rank $2$ torsion free instanton sheaves with singularities along rational curves.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1501.00736
Other: http://arxiv.org/abs/1501.00736
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Moscow Mathematical Journal
  Abbreviation : Mosc. Math. J.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 (1) Sequence Number: - Start / End Page: 117 - 148 Identifier: -