English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Infinitely many solutions to the Yamabe problem on noncompact manifolds

Bettiol, R. G., & Piccione, P. (2018). Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l'Institut Fourier, 68(2), 589-609. doi:10.5802/aif.3172.

Item is

Files

show Files
hide Files
:
Bettiol-Piccione_Infinitely many solutions to the Yamabe problem on noncompact manifolds_2018.pdf (Publisher version), 736KB
Name:
Bettiol-Piccione_Infinitely many solutions to the Yamabe problem on noncompact manifolds_2018.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION–PAS DE MODIFICATION 3.0 FRANCE.

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Bettiol, Renato G.1, Author           
Piccione, Paolo, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Differential Geometry
 Abstract: We establish the existence of infinitely many complete metrics with constant scalar curvature on prescribed conformal classes on certain noncompact product manifolds. These include products of closed manifolds with constant positive scalar curvature and simply-connected symmetric spaces of noncompact or Euclidean type; in particular, $\mathbb S^m \times\mathbb R^d$, $m\geq2$, $d\geq1$, and $\mathbb S^m\times\mathbb H^d$, $2\leq d<m$. As a consequence, we obtain infinitely many periodic solutions to the singular Yamabe problem on $\mathbb S^m\setminus\mathbb S^k$, for all $0\leq k<(m-2)/2$, the maximal range where nonuniqueness is possible. We also show that all Bieberbach groups in $Iso(\mathbb R^d)$ are periods of bifurcating branches of solutions to the
Yamabe problem on $\mathbb S^m\times\mathbb R^d$, $m\geq2$, $d\geq1$.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1603.07788
DOI: 10.5802/aif.3172
arXiv: http://arxiv.org/abs/1603.07788
Other: http://www.mpim-bonn.mpg.de/preblob/5657
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales de l'Institut Fourier
  Abbreviation : Ann. Inst. Fourier
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 68 (2) Sequence Number: - Start / End Page: 589 - 609 Identifier: -