English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Environmentally-induced systematic effects at the high-precision mass spectrometer PENTATRAP

Kromer, K. (2019). Environmentally-induced systematic effects at the high-precision mass spectrometer PENTATRAP. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
Masterthesis_KathrinKromer.pdf (Any fulltext), 10MB
Name:
Masterthesis_KathrinKromer.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kromer, Kathrin1, Author           
Affiliations:
1Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society, ou_904548              

Content

show
hide
Free keywords: -
 MPINP: Präzisionsexperimente - Abteilung Blaum
 Abstract: PENTATRAP is a mass spectrometer consisting of five Penning traps aiming for mass-ratio measurements of long-lived, highly-charged ions to a relative precision of below 10−11 by determining the cyclotron frequencies of trapped ions in a strong magnetic field. At this level of precision, mass-ratio determinations contribute, among others, to neutrino physics and a direct test of special relativity. In order to reach this goal, the systematic uncertainties of the cyclotron frequency measurement originating from environmental influences, including magnetic field, pressure, and temperature fluctuations, have to be precisely known and avoided. In the framework of this thesis, the main sources of magnetic field changes have been identified and an active magnetic field stabilization system was constructed and tested. The temperature was optimized to a stability of 20 mK/h and the temperature dependence of the voltage source for the trapping potentials of the measurement traps was determined to be 2.43(14) · 10−6/K and less. A helium-level and cold-bore
pressure stabilization system has been installed and successfully tested, reducing the fluctuations of the magnetic trapping field to a nearly constant relative drift of −2 · 10−10/h. With the achieved control over the environmental influences the first cyclotron frequency measurements of 187Re/187Re to a relative precision of 8 · 10−12 have been carried out.

Details

show
hide
Language(s):
 Dates: 2019
 Publication Status: Accepted / In Press
 Pages: V, 58 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show