# Item

ITEM ACTIONSEXPORT

**Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula**

Zagier, D. (1996). Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott
formula. In *Proceedings of the Hirzebruch 65 conference on algebraic geometry, Bar- Ilan University,
Ramat Gan, Israel, May 2-7, 1993* (pp. 445-462). Ramat-Gan: Bar-Ilan University.

### Basic

show hide**Item Permalink:**https://hdl.handle.net/21.11116/0000-0004-38ED-3

**Version Permalink:**https://hdl.handle.net/21.11116/0000-0004-38EE-2

**Genre:**Book Chapter

### Files

show Files### Locators

show### Content

show
hide

**Free keywords:**-

**Abstract:**Let Ng, n, d denote the moduli space of semistable n-dimensional vector bundles over a fixed Riemann surface of genus g and having as determinant bundle a fixed line bundle of degree d. Its topology depends only on g, n and d\\pmod n. Over Ng, n, d there is a canonically defined line bundle \\Theta, generalizing the classical theta bundle over the Jacobian of a curve. A basic tool in the study of the moduli spaces is the determinant of the numbers \\dim H^0 (Ng, n, d, \\Theta^k) for variable k. An explicit formula for these numbers was conjectured by the physicist E. Verlinde. In the simplest case n=2, it says that \\dim H^0 (Ng, 2, 0, \\Theta^k)= D+ (g, k+2), \\dim H^0 (Ng, 2, 1, \\Theta^k)= D- (g, 2k+ 2), where D\\varepsilon (g, k)= \\biggl( k\\over 2 \\biggr)^g-1 \\sumj\\pmod k, j\\not\\equiv 0\\pmod k \\varepsilon^j-1 \\over \\sin^2g- 2 π j \\over k \\qquad (g, k\\in \\bbfN,\\ \\varepsilon= \\pm 1,\\ \\varepsilon^k= 1). The present paper discusses some of the many interesting number-theoretical and combinatorial aspects of the formula in the case n=2. Formulas for the rank 3 case and a duality formula for the general rank case are also discussed. Finally, a closed formula is given for the Betti number of the moduli space of arbitrary rank bundles over curves by solving explicitly the well-known Harder-Narasimhan-Atiyah-Bott recursion relation for these numbers.

### Details

show
hide
Date issued: 1996

Other: 111

**Language(s):**

**Dates:**

**Publication Status:**Issued

**Pages:**-

**Publishing info:**-

**Table of Contents:**-

**Rev. Type:**Internal

**Identifiers:**eDoc: 744908

Other: 111

**Degree:**-

### Event

show### Legal Case

show### Project information

show### Source 1

show
hide

**Title:**Proceedings of the Hirzebruch 65 conference on algebraic geometry, Bar- Ilan University, Ramat Gan, Israel, May 2-7, 1993

**Source Genre:**Book

^{ }Creator(s):**Affiliations:**

**Publ. Info:**Ramat-Gan: Bar-Ilan University

**Pages:**-**Volume / Issue:**-**Sequence Number:**-**Start / End Page:**445 - 462**Identifier:**-